Description

An interface to level 1, 2 and 3 BLAS linear algebra routines.

Author

Felix Winkelmann and Ivan Raikov

Version

Requires

Usage

(require-extension blas)

Download

blas.egg

Documentation

Naming conventions for routines

Every routine in the BLAS library comes in four flavors, each prefixed by the letters S, D, C, and Z, respectively. Each letter indicates the format of input data:

  • S stands for single-precision (32-bit IEEE floating point numbers),
  • D stands for double-precision (64-bit IEEE floating point numbers),
  • C stands for complex numbers (represented by pairs of 32-bit IEEE floating point numbers),
  • Z stands for double complex numbers (represented by pairs of 64-bit IEEE floating point numbers)

In addition, each BLAS routine in this egg comes in three flavors:

  1. Safe, pure (prefix: blas:)

    Safe routines check the sizes of their input arguments. For example, if a routine is supplied arguments that indicate that an input matrix is of dimensions M-by-N, then the argument corresponding to that matrix is checked that it is of size M * N.

    Pure routines do not alter their arguments in any way. A new matrix or vector is allocated for the return value of the routine.

  2. Safe, destructive (prefix: blas:, suffix: !)

    Safe routines check the sizes of their input arguments. For example, if a routine is supplied arguments that indicate that an input matrix is of dimensions M-by-N, then the argument corresponding to that matrix is checked that it is of size M * N.

    Destructive routines can modify some or all of their arguments. They are given names ending in exclamation mark. Please consult the BLAS documentation to determine which functions modify their input arguments.

  3. Unsafe, destructive (prefix: unsafe-blas:, suffix: !)

    Unsafe routines do not check the sizes of their input arguments. They invoke the corresponding BLAS routines directly. Unsafe routines do not have pure variants.

For example, function xGEMM (matrix-matrix multiplication) comes in the following variants:

BLAS name Safe, pure Safe, destructive Unsafe, destructive
SGEMM blas:sgemm blas:sgemm! unsafe-blas:sgemm!
DGEMM blas:dgemm blas:dgemm! unsafe-blas:dgemm!
CGEMM blas:cgemm blas:cgemm! unsafe-blas:cgemm!
ZGEMM blas:zgemm blas:zgemm! unsafe-blas:zgemm!

Vector copy routines

procedure: blas:scopy:: F32VECTOR -> F32VECTOR
procedure: blas:dcopy:: F64VECTOR -> F64VECTOR
procedure: blas:ccopy:: F32VECTOR -> F32VECTOR
procedure: blas:zcopy:: F64VECTOR -> F64VECTOR

These procedures return a copy of given input SRFI-4 vector. The returned vector is allocated with the corresponding SRFI-4 constructor, and the input vector is copied to it by the corresponding BLAS copy procedure.

BLAS level 1 routines

Conventions

The BLAS level 1 procedures in this egg differ from the actual routines they invoke by the position of the vector increment arguments (INCX and INCY). In this egg, these arguments are optional; the default value of INCX and INCY is 1.

In the procedure signatures below, these optional arguments are indicated by [ and ] (square brackets).

Apply plane rotation
procedure: blas:srot:: N * X * Y * C * S [INCX * INCY] -> F32VECTOR * F32VECTOR
procedure: blas:drot:: N * X * Y * C * S [INCX * INCY] -> F64VECTOR * F64VECTOR

xROT applies a plane rotation matrix to a sequence of ordered pairs: (x_i , y_i), for i = 1, 2, ..., n.

X and Y are vector of dimensions (N-1) * abs(incx) + 1 and (N-1) * abs(incy) + 1, respectively.

C and S are respectively the cosine and sine of the plane of rotation.

Scale vector
procedure: blas:sscal:: N * ALPHA * X [INCX] -> F32VECTOR
procedure: blas:dscal:: N * ALPHA * X [INCX] -> F64VECTOR
procedure: blas:cscal:: N * ALPHA * X [INCX] -> F32VECTOR
procedure: blas:zscal:: N * ALPHA * X [INCX] -> F64VECTOR

xSCAL scales a vector with a scalar: x := alpha * x.

Swap the elements of two vectors
procedure: blas:sswap:: N * X * Y [INCX * INCY] -> F32VECTOR
procedure: blas:dswap:: N * X * Y [INCX * INCY] -> F64VECTOR
procedure: blas:cswap:: N * X * Y [INCX * INCY] -> F32VECTOR
procedure: blas:zswap:: N * X * Y [INCX * INCY] -> F64VECTOR

xSWAP interchanges the elements of two vectors: x <-> y.

Real vector dot product
procedure: blas:sdot:: N * X * Y [INCX * INCY] -> NUMBER
procedure: blas:ddot:: N * X * Y [INCX * INCY] -> NUMBER

xDOT computes the dot product of two vectors of real values: dot := x'*y = \Sum_{i=1}^{n} (x_i * y_i).

Complex vector dot product
procedure: blas:cdotu:: N * X * Y [INCX * INCY] -> NUMBER
procedure: blas:zdotu:: N * X * Y [INCX * INCY] -> NUMBER

xDOTU computes the dot product of two vectors of complex values: dotu := x'*y = \Sum_{i=1}^{n} (x_i * y_i).

Hermitian vector dot product
procedure: blas:cdotc:: N * X * Y [INCX * INCY] -> NUMBER
procedure: blas:zdotc:: N * X * Y [INCX * INCY] -> NUMBER

xDOTC computes the dot product of the conjugates of two complex vectors: dotu := conjg(x')*y = \Sum_{i=1}^{n} (conjg(x_i) * y_i), for i = 1, 2, ..., n.

Vector multiply-add
procedure: blas:saxpy:: N * ALPHA * X * Y [INCX * INCY] -> F32VECTOR
procedure: blas:daxpy:: N * ALPHA * X * Y [INCX * INCY] -> F64VECTOR
procedure: blas:caxpy:: N * ALPHA * X * Y [INCX * INCY] -> F32VECTOR
procedure: blas:zaxpy:: N * ALPHA * X * Y [INCX * INCY] -> F64VECTOR

xAXPY adds a scalar multiple of a vector to another vector: y := alpha * x + y.

Vector multiply-add with optional offset
procedure: blas:siaxpy:: N * ALPHA * X * Y [INCX * INCY * XOFS * YOFS] -> F32VECTOR
procedure: blas:diaxpy:: N * ALPHA * X * Y [INCX * INCY * XOFS * YOFS] -> F64VECTOR
procedure: blas:ciaxpy:: N * ALPHA * X * Y [INCX * INCY * XOFS * YOFS] -> F32VECTOR
procedure: blas:ziaxpy:: N * ALPHA * X * Y [INCX * INCY * XOFS * YOFS] -> F64VECTOR

xIAXPY adds a scalar multiple of a vector to another vector, where the beginning of each vector argument can be offset: y[yofs:n] := alpha * x[xofs:n] + y[yofs:n].

Euclidean norm of a vector
procedure: blas:snrm2:: N * X [INCX] -> NUMBER
procedure: blas:dnrm2:: N * X [INCX] -> NUMBER
procedure: blas:cnrm2:: N * X [INCX] -> NUMBER
procedure: blas:znrm2:: N * X [INCX] -> NUMBER

xNRM2 computes the Euclidean (L2) norm of a vector.

Sum of absolute values of the elements in a vector
procedure: blas:sasum:: N * X [INCX] -> NUMBER
procedure: blas:dasum:: N * X [INCX] -> NUMBER
procedure: blas:casum:: N * X [INCX] -> NUMBER
procedure: blas:zasum:: N * X [INCX] -> NUMBER

xASUM sums the absolute values of the elements in a vector.

Sum of absolute values of the elements in a vector
procedure: blas:samax:: N * X [INCX] -> INDEX
procedure: blas:damax:: N * X [INCX] -> INDEX
procedure: blas:camax:: N * X [INCX] -> INDEX
procedure: blas:zamax:: N * X [INCX] -> INDEX

xAMAX searches a vector for the first occurrence of its maximum absolute value, and returns the index of that element.

BLAS level 2 routines

Conventions

The BLAS level 2 procedures in this egg differ from the actual routines they invoke by the position of the leading dimension argument (LDA) and the vector increment arguments (INCX and INCY). In this egg, these arguments are optional; the default value of LDAis the largest matrix dimension, depending on the semantics of the respective operation, and the default value of INCX and INCY is 1.

In the procedure signatures below, these optional arguments are indicated by [ and ] (square brackets).

Argument ORDER is one of blas:RowMajor or blas:ColMajor to indicate that the input and output matrices are in row-major or column-major form, respectively.

Where present, argument TRANS can be one of blas:NoTrans or blas:Trans to indicate whether the input matrix is to be transposed or not.

Where present, argument UPLO can be one of blas:Upper or blas:Lower to indicate whether the upper or lower triangular part of an input symmetric matrix is to referenced,or to specify the type of an input triangular matrix.

Where present, argument DIAG can be one of blas:NonUnit or blas:Unit to indicate whether an input triangular matrix is unit triangular or not.

General matrix-vector multiply-add
procedure: blas:sgemv:: ORDER * TRANS * M * N * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:dgemv:: ORDER * TRANS * M * N * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F64VECTOR
procedure: blas:cgemv:: ORDER * TRANS * M * N * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:zgemv:: ORDER * TRANS * M * N * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F64VECTOR

xGEMV performs the matrix-vector multiply-add operation of the form y := alpha*op( A )*x + beta*y, where op( X ) is one of op( A ) = A or op( A ) = A'.

ALPHA and BETA are scalars, and A is an M x N matrix.

X is a vector of size (1 + ( N - 1 ) * abs(INCX)) when argument TRANS is blas:NoTrans, and (1 + ( M - 1 ) * abs(INCX)) otherwise. Y is a vector of size (1 + ( M - 1 ) * abs(INCY)) when argument TRANS is blas:NoTrans, and (1 + ( N - 1 ) * abs(INCY)) otherwise.

Banded matrix-vector multiply-add
procedure: blas:sgbmv:: ORDER * TRANS * M * N * KL * KU * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:dgbmv:: ORDER * TRANS * M * N * KL * KU * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F64VECTOR
procedure: blas:cgbmv:: ORDER * TRANS * M * N * KL * KU * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:zgbmv:: ORDER * TRANS * M * N * KL * KU * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F64VECTOR

xGBMV performs the matrix-vector multiply-add operation of the form y := alpha*op( A )*x + beta*y, where op( X ) is one of op( A ) = A or op( A ) = A'.

ALPHA and BETA are scalars, and A is an M x N banded matrix, with KL sub-diagonals and KU super-diagonals.

X is a vector of size (1 + ( N - 1 ) * abs(INCX)) when argument TRANS is blas:NoTrans, and (1 + ( M - 1 ) * abs(INCX)) otherwise. Y is a vector of size (1 + ( M - 1 ) * abs(INCY)) when argument TRANS is blas:NoTrans, and (1 + ( N - 1 ) * abs(INCY)) otherwise.

Hermitian matrix-vector multiply-add
procedure: blas:chemv:: ORDER * UPLO * N * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:zhemv:: ORDER * UPLO * N * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F64VECTOR

xHEMV performs the matrix-vector multiply-add operation of the form y := alpha*op( A )*x + beta*y, where op( X ) is one of op( A ) = A or op( A ) = A'.

ALPHA and BETA are scalars, and A is an N x N Hermitian matrix.

X and Y are N element vectors.

Hermitian banded matrix-vector multiply-add
procedure: blas:chbmv:: ORDER * UPLO * N * K * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:zhbmv:: ORDER * UPLO * N * K * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F64VECTOR

xHBMV performs the matrix-vector multiply-add operation of the form y := alpha*op( A )*x + beta*y, where op( X ) is one of op( A ) = A or op( A ) = A'.

ALPHA and BETA are scalars, and A is an N x N Hermitian banded matrix, with K super-diagonals.

X and Y are N element vectors.

Symmetric matrix-vector multiply-add
procedure: blas:ssymv:: ORDER * UPLO * N * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:dsymv:: ORDER * UPLO * N * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F64VECTOR

xSYMV performs matrix-vector multiply-add operation of the form y := alpha*A*x + beta*y.

ALPHA and BETA are scalars, and A is an N x N symmetric matrix.

X and Y are N element vectors.

Banded symmetric matrix-vector multiply-add
procedure: blas:ssbmv:: ORDER * UPLO * N * K * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:dsbmv:: ORDER * UPLO * N * K * ALPHA * A * X * BETA * Y [LDA * INCX * INCY] -> F64VECTOR

xSBMV performs matrix-vector multiply-add operation of the form y := alpha*A*B + beta*y.

ALPHA and BETA are scalars, and A is an N x N symmetric banded matrix, with K super-diagonals.

X and Y are N element vectors.

Triangular matrix-vector multiply-add
procedure: blas:strmv:: ORDER * UPLO * TRANS * DIAG * N * A * X [LDA * INCX] -> F32VECTOR
procedure: blas:dtrmv:: ORDER * UPLO * TRANS * DIAG * N * A * X [LDA * INCX] -> F64VECTOR
procedure: blas:ctrmv:: ORDER * UPLO * TRANS * DIAG * N * A * X [LDA * INCX] -> F32VECTOR
procedure: blas:ztrmv:: ORDER * UPLO * TRANS * DIAG * N * A * X [LDA * INCX] -> F64VECTOR

xTRMV performs matrix-vector multiply-add operation of the form y := alpha*op( A )*x, where op ( A ) = A or op ( A ) = A'

ALPHA and BETA are scalars, and A is an N x N upper or lower triangular matrix.

X is a vector of length (1 + (n - 1) * abs(INCX)).

Banded triangular matrix-vector multiply-add
procedure: blas:stbmv:: ORDER * UPLO * TRANS * DIAG * N * K * A * X [LDA * INCX] -> F32VECTOR
procedure: blas:dtbmv:: ORDER * UPLO * TRANS * DIAG * N * K * A * X [LDA * INCX] -> F64VECTOR
procedure: blas:ctbmv:: ORDER * UPLO * TRANS * DIAG * N * K * A * X [LDA * INCX] -> F32VECTOR
procedure: blas:ztbmv:: ORDER * UPLO * TRANS * DIAG * N * K * A * X [LDA * INCX] -> F64VECTOR

xTBMV performs matrix-vector multiply-add operation of the form y := alpha*A*B + beta*y, where op ( A ) = A or op ( A ) = A'

ALPHA and BETA are scalars, and A is an N x N upper or lower triangular banded matrix, with K+1 diagonals.

X is a vector of length (1 + (n - 1) * abs(INCX)).

Triangular matrix equation solve
procedure: blas:strsv:: ORDER * UPLO * TRANS * DIAG * N * ALPHA * A * B * [LDA * INCB] -> F32VECTOR
procedure: blas:dtrsv:: ORDER * UPLO * TRANS * DIAG * N * A * B * [LDA * INCB] -> F64VECTOR
procedure: blas:ctrsv:: ORDER * UPLO * TRANS * DIAG * N * A * B * [LDA * INCB] -> F32VECTOR
procedure: blas:ztrsv:: ORDER * UPLO * TRANS * DIAG * N * A * B * [LDA * INCB] -> F64VECTOR

xTRSV solves one of the systems of equations A*x = b or A'*x = b.

ALPHA and BETA are scalars, A is a upper or lower triangular matrix, and B is a N element vector.

Banded triangular matrix equation solve
procedure: blas:stbsv:: ORDER * UPLO * TRANS * DIAG * N * K * A * B * [LDA * INCB] -> F32VECTOR
procedure: blas:dtbsv:: ORDER * UPLO * TRANS * DIAG * N * K * A * B * [LDA * INCB] -> F64VECTOR
procedure: blas:ctbsv:: ORDER * UPLO * TRANS * DIAG * N * K * A * B * [LDA * INCB] -> F32VECTOR
procedure: blas:ztbsv:: ORDER * UPLO * TRANS * DIAG * N * K * A * B * [LDA * INCB] -> F64VECTOR

xTBSV solves one of the systems of equations A*x = b or A'*x = b.

ALPHA and BETA are scalars, A is a upper or lower banded triangular matrix with K+1 diagonals, and B is a N element vector.

Rank 1 operation
procedure: blas:sger:: ORDER * M * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:dger:: ORDER * M * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F64VECTOR

xGER performs the rank 1 operation A := alpha*x*y' + A.

ALPHA is a scalar, X is an M element vector, Y is an N element vector, and A is an M x N matrix.

Rank 1 operation with optional offset
procedure: blas:siger:: ORDER * M * N * ALPHA * X * Y * A [LDA * INCX * INCY * XOFS * YOFS] -> F32VECTOR
procedure: blas:diger:: ORDER * M * N * ALPHA * X * Y * A [LDA * INCX * INCY * XOFS * YOFS] -> F64VECTOR

xIGER performs the rank 1 operation A := alpha*x[xofs:M]*y'[yofs:N] + A.

ALPHA is a scalar, X is an M element vector, Y is an N element vector, and A is an M x N matrix.

Rank 1 operation on complex matrices and vectors
procedure: blas:cgeru:: ORDER * M * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:zgeru:: ORDER * M * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F64VECTOR

xGERU performs the rank 1 operation A := alpha*x*y' + A.

ALPHA is a scalar, X is an M element vector, Y is an N element vector, and A is an M x N matrix.

Rank 1 operation on complex matrices and vectors
procedure: blas:cgerc:: ORDER * M * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:zgerc:: ORDER * M * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F64VECTOR

xGERC performs the rank 1 operation A := alpha*x*conjg(y') + A.

ALPHA is a scalar, X is an M element vector, Y is an N element vector, and A is an M x N matrix.

Hermitian rank 1 operation
procedure: blas:cher:: ORDER * UPLO * N * ALPHA * X * A [LDA * INCX] -> F32VECTOR
procedure: blas:zher:: ORDER * UPLO * N * ALPHA * X * A [LDA * INCX] -> F64VECTOR

xHER performs the Hermitian rank 1 operation A := alpha*x*conjg(x') + A.

ALPHA is a scalar, X is an N element vector, and A is an N x N Hermitian matrix.

Hermitian rank 2 operation
procedure: blas:cher2:: ORDER * UPLO * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:zher2:: ORDER * UPLO * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F64VECTOR

xHER2 performs the Hermitian rank 2 operation A := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A.

ALPHA is a scalar, X and Y are N element vectors, and A is an N x N Hermitian matrix.

Symmetric rank 1 operation
procedure: blas:ssyr:: ORDER * UPLO * N * ALPHA * X * A [LDA * INCX] -> F32VECTOR
procedure: blas:dsyr:: ORDER * UPLO * N * ALPHA * X * A [LDA * INCX] -> F64VECTOR

xSYR performs the symmetric rank 1 operation A := alpha*x*x' + A.

ALPHA is a scalar, X is an N element vector, and A is an N x N symmetric matrix.

Symmetric rank 2 operation
procedure: blas:ssyr2:: ORDER * UPLO * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F32VECTOR
procedure: blas:dsyr2:: ORDER * UPLO * N * ALPHA * X * Y * A [LDA * INCX * INCY] -> F64VECTOR

xSYR2 performs the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A.

ALPHA is a scalar, X and Y are N element vectors, and A is an N x N symmetric matrix.

BLAS level 3 routines

Conventions

The BLAS level 3 procedures in this egg differ from the actual routines they invoke by the position of the leading dimension arguments (LDA, LDB, and LDC). In this egg, these arguments are optional, and their default values are set to the largest matrix dimension, depending on the semantics of the respective operation.

In the procedure signatures below, these optional arguments are indicated by [ and ] (square brackets).

Argument ORDER is one of blas:RowMajor or blas:ColMajor to indicate that the input and output matrices are in row-major or column-major form, respectively.

Where present, arguments TRANS, TRANSA, TRANSB can be one of blas:NoTrans or blas:Trans to indicate whether the respective input matrices are to be transposed or not.

Where present, argument SIDE can be one of blas:Left or blas:Right to indicate whether an input symmetric matrix appears on the left or right in the respective operation.

Where present, argument UPLO can be one of blas:Upper or blas:Lower to indicate whether the upper or lower triangular part of an input symmetric matrix is to referenced,or to specify the type of an input triangular matrix.

Where present, argument DIAG can be one of blas:NonUnit or blas:Unit to indicate whether an input triangular matrix is unit triangular or not.

General matrix multiply-add
procedure: blas:sgemm:: ORDER * TRANSA * TRANSB * M * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:dgemm:: ORDER * TRANSA * TRANSB * M * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F64VECTOR
procedure: blas:cgemm:: ORDER * TRANSA * TRANSB * M * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:zgemm:: ORDER * TRANSA * TRANSB * M * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F64VECTOR

xGEMM performs matrix-matrix multiply-add operation of the form C := alpha*op( A )*op( B ) + beta*C, where op( X ) is one of op( X ) = X or op( X ) = X'.

ALPHA and BETA are scalars, and A, B and C are matrices, with op( A ) an M x K matrix, op( B ) a K x N matrix and C an M x N matrix.

Symmetric matrix multiply-add
procedure: blas:ssymm:: ORDER * SIDE * UPLO * M * N * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:dsymm:: ORDER * SIDE * UPLO * M * N * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F64VECTOR
procedure: blas:csymm:: ORDER * SIDE * UPLO * M * N * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:zsymm:: ORDER * SIDE * UPLO * M * N * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F64VECTOR

xSYMM performs matrix-matrix multiply-add operation of the form C := alpha*A*B + beta*C or C := alpha*B*A + beta*C.

ALPHA and BETA are scalars, A is a symmetric matrix, and B and C are M x N matrices.

Symmetric rank k operation
procedure: blas:ssyrk:: ORDER * UPLO * TRANS * N * K * ALPHA * A * BETA * C [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:dsyrk:: ORDER * UPLO * TRANS * N * K * ALPHA * A * BETA * C [LDA * LDB * LDC] -> F64VECTOR
procedure: blas:csyrk:: ORDER * UPLO * TRANS * N * K * ALPHA * A * BETA * C [LDA * LDB * LDC] -> F64VECTOR
procedure: blas:zsyrk:: ORDER * UPLO * TRANS * N * K * ALPHA * A * BETA * C [LDA * LDB * LDC] -> F64VECTOR

xSYRK performs one of the symmetric rank k operations C := alpha*A*A' + beta*C or C := alpha*A'*A + beta*C.

ALPHA and BETA are scalars, A is an N x K or K x N matrix, and C is an N x N symmetric matrix.

Hermitian rank k operation
procedure: blas:cherk:: ORDER * UPLO * TRANS * N * K * ALPHA * A * BETA * C [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:zherk:: ORDER * UPLO * TRANS * N * K * ALPHA * A * BETA * C [LDA * LDB * LDC] -> F64VECTOR

xHERK performs one of the hermitian rank k operations C := alpha*A*conjg(A') + beta*C or C := alpha*conjg(A')*A + beta*C.

ALPHA and BETA are scalars, A is an N x K or K x N matrix, and C is an N x N hermitian matrix.

Symmetric rank 2k operation
procedure: blas:ssyr2k:: ORDER * UPLO * TRANS * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:dsyr2k:: ORDER * UPLO * TRANS * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F64VECTOR
procedure: blas:csyr2k:: ORDER * UPLO * TRANS * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F64VECTOR
procedure: blas:zsyr2k:: ORDER * UPLO * TRANS * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F64VECTOR

xSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B' + beta*C or C := alpha*B'*A + beta*C.

ALPHA and BETA are scalars, A and B are N x K or K x N matrices, and C is an N x N symmetric matrix.

Hermitian rank 2k operation
procedure: blas:cher2k:: ORDER * UPLO * TRANS * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:zher2k:: ORDER * UPLO * TRANS * N * K * ALPHA * A * B * BETA * C [LDA * LDB * LDC] -> F64VECTOR

xHER2K performs one of the hermitian rank 2k operations C := alpha*A*conjg(B') + beta*C or C := alpha*conjg(B')*A + beta*C.

ALPHA and BETA are scalars, A and B are N x K or K x N matrices, and C is an N x N hermitian matrix.

Triangular matrix multiply
procedure: blas:strmm:: ORDER * SIDE * UPLO * TRANSA * DIAG * M * N * ALPHA * A * B [LDA * LDB] -> F32VECTOR
procedure: blas:dtrmm:: ORDER * SIDE * UPLO * TRANSA * DIAG * M * N * ALPHA * A * B [LDA * LDB] -> F64VECTOR
procedure: blas:ctrmm:: ORDER * SIDE * UPLO * TRANSA * DIAG * M * N * ALPHA * A * B [LDA * LDB] -> F32VECTOR
procedure: blas:ztrmm:: ORDER * SIDE * UPLO * TRANSA * DIAG * M * N * ALPHA * A * B [LDA * LDB] -> F64VECTOR

xTRMM performs matrix-matrix multiply operation of the form B := alpha*op( A )*B or B := alpha*B*op( A ).

ALPHA is a scalar, A is an upper or lower triangular matrix, and B is an M x N matrix.

Triangular matrix equation solve
procedure: blas:strsm:: ORDER * SIDE * UPLO * TRANSA * DIAG * M * N * ALPHA * A * B * [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:dtrsm:: ORDER * SIDE * UPLO * TRANSA * DIAG * M * N * ALPHA * A * B * [LDA * LDB * LDC] -> F64VECTOR
procedure: blas:ctrsm:: ORDER * SIDE * UPLO * TRANSA * DIAG * M * N * ALPHA * A * B * [LDA * LDB * LDC] -> F32VECTOR
procedure: blas:ztrsm:: ORDER * SIDE * UPLO * TRANSA * DIAG * M * N * ALPHA * A * B * [LDA * LDB * LDC] -> F64VECTOR

xTRSM solves one of the matrix equations op( A )*X = alpha*B or X*op( A ) = alpha*B.

op( A ) is one of op( A ) = A or op( A ) = A'.

ALPHA and BETA are scalars, A is a upper or lower triangular matrix, and B is a M x N matrix.

Examples

(require-extension srfi-4)
(require-extension blas)

(define order blas:ColMajor)
(define transa blas:NoTrans)

(define m 4)
(define n 4)

(define alpha 1)
(define beta 0)

(define a				; column-major order!
  (f64vector 1 2 3 4
	     1 1 1 1
	     3 4 5 6
	     5 6 7 8) )

(define x (f64vector 1 2 1 1))
(define y (f64vector 0 0 0 0))
   
(blas:dgemv! order transa m n alpha a x beta y)

(print y)

License

Copyright (c) 2003-2006, Felix L. Winkelmann 
Copyright (c) 2007, Ivan Raikov

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

  Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

  Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

  Neither the name of the author nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.