CHICKEN User's Manual - The User's Manual

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

1 The User's Manual 1
2 Overview. 2
2.1 FRALUTES ...ttt ettt ettt sttt ettt ettt e s a bt e sab e e s a bt e eab e e e b et e bt e e shb e e sabeesabeesabeeebaeenaas 2

3 Basic mode of operation 3
4 Using the compiler 4
4.1 Compiler command line FOTMAL...........coueiiiiiiiiiiie ettt ettt 4

4.2 RUNTIME OPLIONS ...ctteuteeiieeiteeite ettt etteeete et e st e satesutesuteshtesatesatesaeesbeesbeeshtesheesaeesbeesbeesbtesbeesheesbeenseenss 8

4.3 EXAIMIPLES . c..eveeuteiiiieitetenteeteetest ettt ettt ettt et et sh et be bt bbbt bt et b e bt et et nh e b et et sheeaeens 9

4.3.1 A simple example (with one source file).......c.ccoeverviereninieiinenineieeeeeeeeeee e 9

4.3.2 An example with multiple files.........cooriiiiiiiiiii e 10

4.4 EXtending the COMPILEL........coouiiiiiiiii ettt ettt et ettt et e e bt e b e beeneean 11

4.5 Distributing compiled C fIleS.......ooiuiiiiiiieiieie ettt ae s 12

5 Using the interpreter. 14
5.1 Interpreter command line fOrMAL.........cocuiiiuiiiiiiiiiiiee ettt 14

5.2 WIItING SCREIME SCTIPLS....eeutiiutieitieieeie ettt ettt ettt et e bt e bt et et e be e teebeebeebeenbeensean 15

5.3 TOPIEVEL COMMANGAS......ceutieuiieiieie ettt et ettt et e et e bt e bt e bt e bt e be e teenbeebeebeenbeensean 16

5.4 tOPleVEI-COMMEANA.oiiiiiiiie ettt ettt et e b e et e bt e be e teebeebeebeenbeeneean 17

5.5 HISTOTY BCCESS. e uvteuteeuteeuteete et et et ete e bt et et e bt e bt eabe e bt eabeeabeeabeenteeabeeabeeabeenbeenbeenteenbeenbeenseenbeansean 17

5.6 SEL-AESCIIDET ...ttt ettt et e b e e bt et ettt e e be e bt e bt e beeneean 17

5.7 Auto-completion and ©ITION..........c.eiiuieriieiieie ettt ettt et ettt ettt et e bt e b e eee s 18

5.8 AcCCESSING AOCUMEIEALION. ...c..eiiutiiieiieeteete ettt ettt et et et et e e e e be e bt e bt eabe e bt eteenbeebeebeenbeensean 18

6 Supported language. 19
7 Deviations from the standard 20
8 Extensions to the standard. 22
9 Non-standard read syntax 25
9.1 Multiline BIOCK COMMENL........cccutiiiiiiieiieiteie ettt ettt ettt ettt ettt ebe e teebe e b ebeenbeeneean 25

9.2 EXPIession COMIMEIL.c..eetertirrireetentinieeitententeeseetentesteestesesseeseessesesseessensessesmeensensessesssensensesseenne 25

9.3 External RePIeSENIAtION........cccueruirieiiriiniietetenteetetente sttt ettt ettt sae st e e b sbe e enbesbeeaeenee 25

9.4 SYNLAX EXPIESSION. ..c..eiriiriiriiitintinieetentinie ettt ettt ettt et bt sbe et et e bt e s entesaeeaeesbenbesbeeaaenenbeeneenes 25

9.5 LoCation EXPIESSION....c..erutitirieniirtietetinieeitetest ettt ettt ettt sttt b et sae et et esbesbeeaaebesbeeaeenee 25

9.6 KEYWOTW......ceiiiiiiiieieienieeteteet ettt ettt et sttt b ettt b et sa et e b e nbesbeeaaebesbeeaeenee 25

9.7 Multiline String COMSANL......cc.eoutrutetiriiriirterterteeitetente st eetete st ebe ettt esr et saeeaeesbesbesbeeneensesbeeneenee 25

9.8 Multiline String Constant with Embedded EXPressions.........c..ceveeverireesieneneneeneneneeneeneneeeenns 26

9.9 FOT@IZN DECIATE........coutiiiiiiiieiiiiiteeteet ettt ettt et et sb et sbe bbbt e 26

9.10 Sharp Prefixed SYMDBOL.......cccoiiiiiiiiiic ettt e 26

1T BANG ..ttt et et et e r e e et e e neene s 26

9.11.1 LiNe COMIMENL.ieutieuiienieeiieeie et ettt ettt et e bt et e bt e teesteeabeeabeenbeenbeenbeebeebeenbeenbeenbeensean 27

0. 11.2 EOF ODJECE ..ottt ettt ettt ettt sh et be sttt e be st et e sbesatestentesueemnens 27

9.11.3 DSSSL Formal Parameter LiSt ANNOtAtION.......cccueeiuierieeieeieeieeieeieee e 27

9.11.4 Read Mark INVOCAtION.......ccuiiiieiieieeie ettt ettt ettt ettt e be e b beeneean 27

9.12 Case Sensitive EXPIEeSSION......ccirtirtiriririeriiriirieeierte sttt ettt et et sttt sre st sbe b e 27

9.13 Case InSensitive EXPIreSSION......cccuetiriririeriiriirieterie ettt ettt ettt sre bbb e ene 27

9.14 Conditional EXPanSION........cccoteeerieriinirienieniinteteste ettt ettt ete st et te st sbeestennesbeeneenes 27

CHICKEN User's Manual - The User's Manual

10 Non-standard macros and special forms

Chicken User's Manual

10.1 Making extra libraries and extensions available...........c.ccooiiiiiiiiiiiiii e
TO.1.T T@QUITE-EXEBMSIONL. ¢ ..eeuteeuteeuiieute et et et ete et et et et e eateeaeeeabeea bt eateeaeeeaeeeateembeeaseemneeneesaeesneeaas
10.1.2 defiNE-EXEEISION. .. .eeutitirieeieterteeitete sttt ettt ettt ettt et e sbe et et st sb et e besbeebeemaebesbeeneenee

10.2 Binding forms for optional argUMENTS..........ceoueeuieieeiieieeie ettt ettt sttt eeeeeaeeseeeas

10.2.1 optional....

1O.2.2 CASE-TAIMDAA......coieeeeeeeeeeeeeeeeeeeeee ettt e ettt e e e et e et eeeeeeeeaeeeeeeeeeeesesesesessssssssssessssnnnnnes

10.3.2 rec.............
10.3.3 cut.............

10.3.4 dEINE-VALUES. ... oottt ettt et et e et eeaeeeeeeeeseeeeeeeesesesesessssssssssesssssnnnnnes

10.3.5 fluid-let.....
10.3.6 let-values..
10.3.7 let*-values

1O.3.8 JELIEC-VALUES.eeiutieiiiieiie ettt et ettt sttt ettt e bt e e sabe e sabeesabeesabeeeabaeenbbeenanes
10.3.9 PATAIMNELEIIZE.eeuventeiiriieienie ettt ettt ettt ettt ettt sb et e b st sb et et e sbeebeesaebesbeeneenee

10.3.10 receive....

JO.3.11 SEUI-VAIUES ..ttt e e e e e e s e ettt e e e e s eeatteeeeeeessaaraeeeeesssnnrenneeeas
10.4 Substitution fOrMS ANd IMACTOS.ciiiiiiiiieeieeeeeeeieeeee e e e et e e e e e eeeareeeeeeeeessaaeeeeeesssnssaareeeessssnrnnes
10.4.1 defINE-CONSTANT........ccoiiiiiiiiieeeieeiteieee e e ettt e e e e eea e e e e e e etaaeeeeesseestaeeeeesessssaasreeeessssnsreneeeas
10.4.2 defINE-TNIINE. .. .ovvrieiiiiieeiieiee et e e e e et e e e s s e eataeeeeeesesaareeeeesssesnnaeneeeas
10.4.3 defINE-TNACTQ....evvviiiiiiiiiieiee et e e et e e e e e et e e e s s e eataeeeeeessssaaaaeeeesseennnaeneeeas
10.4.4 defiNe-TOr-SYNMEAK......eeitietietieie ettt ettt ettt et et et e et e bt et e eateeateeabeeabeemeeeateeaeesneeeas
10.5 CoNdItiONAl TOITNS.couvviiiiiie ettt e e e e e e e e e e e eeeaaaeeeeessessaaaeeeeeesssnssaareeeessennnnnes

10.5.1 select........
10.5.2 unless........
10.5.3 when.........

10.6 RECOTA SIITUCTUTES.eeuteeuteeuieete ettt ettt ettt et ettt eate et e eabeeabeembeemeeeateeatesatesaeeeabesmeeentesaeesntenas
10.6.1 defINE-TECOTA. ...c.ueeiuiiiiieieett ettt et ettt ettt et e ateeateebeeaeeeateeaeeeneeeas
10.6.2 defiNe-TECOTA-PIINLET....cc..ietietieieeie ettt ettt ettt ettt ettt et e e eateeateeabeeabeeaeeeaeesaeesneeeas
10.6.3 defiNe-TECOTA-EYPE. .. ceueeeuiiiiietieie ettt ettt ettt ettt ettt ettt e et eabeeabeeaeeeatesateeneeeas

10.7 Other forms........
10.7.1 assert........

10.7.2 CONA-EXPANG.....eoutiiniiiiiiit ettt ettt et ettt e et e bt et e bt et e eateeateeabeeabeeaeeeatesaeesneeaas

10.7.3 ensure.......
10.7.4 eval-when.
10.7.5 include......
10.7.6 nth-value...
10.7.7 time..........

28
28
28
29
29
29
30
30
30
31
31
31
31
31
31
31
32
32
32
32
32
33
33
33
33
33
34
34
34
34
34
34
35
35
35
35
35
36
36
37
37
37

11 Pattern matching

11.1 Pattern Matching EXPreSSIONS.eeouteuieiiiiiiie ettt ettt ettt et ettt eesee st eas

11.2 Patterns..............
11.3 Match Failure.....
11.4 Record Structure
11.5 Code Generation

S PaAtLEIM. ..ttt e e e ettt

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

12 Declarations. 43
T2.1 dECIATE. ...ttt et et ettt et et et e e bt et e et e e at e e ateeabe et e eateenteeateeateeas 43
12.2 @lWAYS-DOUNG.....c..tiiiiieiiiieee ettt ettt ettt ettt et et e b e et e e ateeateeabeeabeeaeeenteeaeeeateeas 43
123 BIOCK .ttt ettt ettt h et h e bt et b e she et b e e bt ean et bt eaeeanes 43
12,4 DIOCK-GIODAL ...ttt et ettt ettt et e et e st et e e ateeateeaeeeateeas 43
T2.5 AR .ttt et bbb s h et h e e bbbt esn et bt et anes 43
12.6 DOUNA-tO-PIOCEAUIE.......eiuiiiuiieiieie ettt ettt ettt et ettt e bt eateeateeatesateeabeeaeeeneesaeesaeeeas 43
1277 CoOPHIOMIS ¢ttt ettt ettt et ettt ettt e bt eateeat e e at e eateeateeab e e abeeabeeat e eateeateeateeabeeabeeateenteeateeateeas 43
12.8 CRECK-CSYMEAX. ...ttt ettt ettt ettt ettt ettt ettt et e et e e bt eat e eateeateeatesateeabeeaseeneesaeesateaas 44
12,9 COMSEANL. c...euiieiiieiiieii ettt et ettt ettt et et st e et e a e et e eaesanesanesaneemneemnesanesanenes 44
T2, 10 @XPOTL .ttt ettt ettt ettt ettt e sttt e sateesab e s bt e eabee e bt e e sbbeesabeesabeesabeeeabe e e baeeabbeenbbeeeabeesabee e baeenne 44
T2, 11 @I @XPOTES. c..teuteeuieeuteeuteeuteete et et et et et e eateeateeabeeateeateeateemteeabeembeemeeeateeaeeeateeateeabeeaseemtesneesnteans 44
12.12 emit-eXternal-protOtyPeS-TITSh ... oeouiiieiieiit ettt ettt ettt ettt et ettt e eeeaee st eas 44
12.13 diSADIE-TNEEITUPLS.eeueeeuteeuieete ettt ettt ettt et ettt et et e et e et e e te et e eateeateeateeateeabeeaeeeneesneesnteaas 44
12.14 diSADIE-WAITIINGeeuteeuieeitete ettt ettt ettt ettt et et et e e abe e abe e bt et e eateeateeateeabeeabeeaeeeneesaeesaneaas 45
T2 15 AIMIPOTE ettt ettt ettt et ettt et et et e et e ateea bt eateeateeabeeabeembeemteeateeateeateeateeabeeabeenteeaeeeaneens 45
T2.16 INIIIE. ...ttt et ettt ettt e st e st e eat e e abeem bt emteeabeeateeateeabeeabeeabeenteeateenteaas 45
T2.17 ANHNE-TIIIL. ..ttt ettt ettt et et e et eateeateeateeabeeabeeaeeeneesaeesneeens 45
12.18 interruptS-ENabIEd.oeiiiiiiiieie et ettt et et et ettt ettt 45
12.19 Keep-ShadOWEd-TNACTOSc..co.eeiiriiriiriieieniinieet ettt ettt ettt b bt esae bt sbeesnetesbeeneennes 45
12.20 1ambBAa-Tft. ..ottt et ettt ettt ettt et e bt et e eate et eas 46
12,21 TINK-OPEIONS. ¢ttt ettt et ettt ettt ettt ettt e st e ateeab e s abeemteemteeateeateeateeabesabeeaseenteeaeesateaas 46
12.22 N0-AIZC-CRECKS. . ..ottt ettt ettt ettt et et e ettt e et eeateeaeesaeeeas 46
12.23 NO-DOUNA-CRECKS......eetiiiieie ettt ettt ettt et sttt e aeeeaeesaeeeas 46
12.24 n0-Procedure-ChECKS.........ocuiiiieiieieee ettt et ettt ettt et eaee st 46
12,25 POSE-PIOCESS. ¢ uteeuteeuteeuteeute et eate e bt et euteeateeateeateeateeateeateeateeateeateeabeemteemseeateemeeeatesabeeabeeabeenteeaeesaneeas 46
12.26 NMUINIDET-EYP.. ..ottt ettt ettt ettt ettt et ettt e at e et e eabeeabeemteeateeateeateeatesabeeabeemseentesatesntaans 46
12.27 fiXnUm-AritRMETIC. ...eueieiiiiie ettt ettt ettt et ettt et et eeaee et eas 47
12.28 TUN-EIME-TIIACTOS ... eeeteeute et et et et et et ebeeateeateeateeateeateeateeateeabeembeeaeeeateamteeatesabeeaseeaseentesaeesntenas 47
12.29 Standard-bindINgS.......ccceverrerierierienenieeteene ettt ettt et sttt et s be et nb et eanes 47
12.30 eXtended-DINAINES.....c.eoiiiiiieieeie ettt et ettt et e et e e ate et e eabe et e eateenteeatesateeas 47
12.31 USUAI-INEEETALIONS ...eueeeuteeuieete ettt ettt ettt ettt et et e et e et e et e et e eateeateeatesateeabeeaeeeneeeaeesnseens 47
T2.32 UINIE ittt ettt b sttt s bt e b et e st s bt e et et e s bt e bt st et e bt ebe e et bt bt enn et e bt eaeennes 47
T2.33 UNSATE. ..ttt ettt ettt ettt et e ettt et et e et e e bt eate et e eateenteeateeateeas 48
T2.34 UNUSEA.. ettt ettt et ettt ettt et et e eat e et e e m bt eateeateeateeateeabeeabeeabeenteeateeateeas 48
12,35 ULttt ettt et ettt et ettt e bt e st e s a bt et e e b et e bt e e bt e e s a bt e e a bt e e be e e ba e e bt e e abbeeebbeesabeesabee e baeenne 48

13 Parameters 49
13.1 MAKE-PATAIMNICLEL.c..evieueetetirieetetente ettt et ettt ettt et bt et et st sbe e st et e s b sbeesae bt sbeennensenbeeneennes 49
13,2 CaS-SEISIEIVE. ¢ e euteeeteeeteeete ettt ettt ettt et et e bt et et e e ateeateeateeabeembeemteeateeaeeeateeabeeabeeabeenteeateeateeas 49
13.3 dynamic-10ad-IIDIaries........ccceeeriiriiririeieiitetctene ettt sttt ettt 49
13.4 command-lNe-arGUIMENLS.........cc..coirerierierinieteienieetet ettt et st s eseebesbesbeesse bt sbeennensesbeeneennes 49
13.5 CUITENE-TEAA-EADIE......eoutiiiiieie ettt ettt ettt et et et e et e e teeateeaeeeaeeeas 49
13.6 @XAE-NANAICT. ...ttt ettt ettt et et e et e et et et et e eateeateeas 50
13.7 @VAI-NANAIET ..ottt et et ettt ettt e bt et et e et et e eateeateeas 50
13.8 OTCETINALIZETS. ...ttt ettt ettt et et et ettt e et e e ateeateeabeeabeeaeeenteeaeesnteeas 50
13.9 ImMPlCit-eXit-NANAIET.cooviriiiiiiiiiireeecee ettt ettt 50
13,10 KEYWOTA-SEYLR. ...ttt ettt et et et ettt et et eeateeabeeabeeaeeenteeatesaneeas 50
13,11 LOAA-VETDOSE. ...ttt ettt ettt ettt ettt et e et e eateeateeateeabeeaseentesaeesateeas 50
13,12 PIrOZIAIM-TIAIME.eeuteeuteeuteenieete et et et et eteeateeateeabeeateeateeateeaeeeabeembeemeeeateemteentesaseeabeemsesnsesaeesnneans 50
13,13 TEPI-PIOMIPL. ..ttt ettt ettt et ettt et e e bt et e em bt eateeateeateeateeabeeabeemeeeneesaeesntaaas 50
13,14 1@SEE-NANAICT........eiiieiiie ettt et ettt ettt et e et e s ate et e eateeateeaeesnteeas 51

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

14 Unit library. 52
T4.1 ATTERIMETIC. ...ttt ettt et sttt sb e st s bt sbe et e bt ebeesnenbesbeeaeennen 52
T4 1.1 dd1/SUD L.ttt sttt ettt 52
14.1.2 BiNary iNt@ZEr OPEIALIONS.cc..teuteteeieeteeteeie et eteeteeateeteeabeeateeteeaeesateeabeeabeeneeeneesaeesneeeas 52

T4 1.3 DIE-SEE? .ttt ettt b ettt b ettt b e bttt et b e bt et ebe b e 52

T4, 1.4 FIXIUIMI Y.ttt ettt ettt sb ettt sb et e b sb e ebeemaebesbeeneenee 52
14.1.5 Arithmetic fIXNUM OPEIATIONS.cecutiiieiieieeie et ettt ettt ettt eeeeteeteebeebeeaeesaeesaeesneeeas 52
14.1.6 Arithmetic floating-pOint OPETAtIONS........cecuieuierieetieieete ettt ettt et e ete et et eee e eeesaeeeas 53

T4 1.7 STZIUINL ettt ettt ettt et ettt et e e st e e ateeateeabeem bt eateeateemeeeateeabeeabeemeeeneesaeesneeeas 53

T4 T8 HINIEE ...ttt ettt ettt sttt ettt a et ebe b e 54
14.1.9 flonUM-PrINE-PIECISION. .. .cevitirierutetenterieetenteete ettt eteste st et etestesbeeaeessesbesbeeseensesbeeneenee 54
14.2 File INPUL/OULPUL.......eeuieiniteie ettt ettt ettt et ettt et e et et e eateeateeatesabeeabeeaeeentesaeesneeeas 54
14.2.1 CUITENE-OULPUL-POTL. .eeueeuteeatteatt et et et et et et e bt eaeeeateeatesabe e beenteeateeaeesateeateeaseeneeentesneesneeaas 54
14.2.2 CUITENE-EITOT-POTE ¢t euteeuteeateeute et eateeeeeateeute et eeeeaeeeaeeeabeeabeeabeeaseeatesaeesaseeabeeasesnseennesanesneeans 54
14.2.3 fTUSR-OULPUL. ...ttt ettt ettt ettt e et eabe et e eateeatesaeeeneeeas 54
14.2.4 POTT-TIAINE.cuteeueeenteete ettt ettt et et et e bt et e b e eae e eaeeeateeabeembeeaeeeateemteeateeabeeabeemseentesaeesneeans 54
14.2.5 POTT-POSTLION.euteeneteiieeit ettt ettt ettt ettt ettt e ateeabe et e e bt et e eateeaeesateeabeeabeemeeeatesneesneeans 55
14.2.6 SEE-POTT-TIAIME ... ettt ettt et ettt et ettt et st e et e et et e et e eateeabeeabeeateeateeaeesneeeas 55
TA.3 FALES .ttt ettt et bbbt bbbt bbbt et be et ennen 55
14.3.1 delete-fIle...cuuiiiiieieieieeee ettt sttt 55
14.3.2 FILE-EXISES 7.ttt ettt et b bttt et a e bbbt bbb eaeenee 55
14.3.3 1NAME-TI1E. ...ttt sttt et st 55

T4 .4 SEEINE POTES ..ttt ettt ettt ettt ettt et e e bt e bt et e et e eateeateeabeeabeembeemteemteeateeateeabeeabeeaseentesaeesnteans 55
14,4, T GEt-OULPUL-SIIIIG, .euveeuteeute et et ettt et ettt et et et e eaeeeaeeeabe et e eateeateeaeeemteeateembeemeeeatesaeesneeaas 55
14.4.2 OPEN-INPUL-SIIINE......eeuteeuieeteete ettt ettt ettt et esbeeabeeabe e bt e et eateeaeeeateeabeeabeemeeeneesaeesneeaas 56
14.4.3 OPEN-OULPUL-SITITIE, ... euveeuteeuteeute et et et ettt et e bt et e eateeabeeabe e beeateeateeaeeeateeabeeabeemeeeneesaeesneeaas 56
14.5 Feature 1deNtIfITS. ... c..eeeeiiriiriirieienieeitetet ettt sttt sttt et et e b e s bt etesbeeaeennen 56
T4.5.1 FRALUTES...c..eeutentiiteiieterteeetee sttt ettt ettt ettt sb et e b e st sbe et e b e sbeebeesaenbesbeeneenee 56
T4.5.2 FRALUTE ...ttt ettt ettt ettt sb ettt sb et e b e s b ebe e e et s bt eneenee 56
14.5.3 TRZISTET-TEALUTE L......eeiieeie ettt et ettt ettt et e e abe et eeaeeeatesanesneeeas 56
14.5.4 UNre@IStET-TEAUTIE........eiiiiiiee ettt ettt ettt ettt ettt et eteeaeeeneeeas 56
T4.6 K@Y WOTAS. ...ttt et ettt ettt et et e eate e abeem bt eateeateeateeatesabesabeeaseemteeneesateans 57
T4.6.1 GEE-KEYWOT.....eiuiiiiiiieete ettt ettt ettt ettt ettt et e et et e eateeabeeabeeateeateeanesneeeas 57
T4.6.2 KEYWOTA ..ottt ettt ettt ettt ettt ettt e bt et e bt e et eateemteeateeabeeateeateeaeeeneeaas 57
14.6.3 KEYWOTA SIINE....cutieuteeuiieitett ettt et ettt ettt et e et eateeabe et e bt eateeaeeeateeabeembeeneeeneeeaeesnneaas 57
14.6.4 StrING KEYWOIT....coueiiiiiiieit ettt ettt ettt ettt et ettt eateeaeeeaeeeas 57
T4, 7 EXCEPIIONS ...ttt ettt ettt et ettt ettt et e bt et e bt eateeateeabeeabeembeemteeateemteeateeateeabeeaseentesaeesaneans 57
14.7.1 CONAIION-CASE. .. .eeuvenreiireeeienienieeitete st et eatent ettt ete st e bt et estesb e eate s e stesbeeatebesbeebeessenbenbeeneenee 58
14.7.2 DI@AKPOINLueeuteenttete ettt ettt et ettt et ettt et e et e e bt et e eateeateeateeabeeabeemteeneeeneesneeaas 58
14.8 Environment information and syStem INteIface........cccuevveriririierieneneeieneneneeienieeieeeeee e eeeennes 59
T4 8T AIZ Vet ettt ettt s st et st ne st et ean e e ae s anesaneean 59
482 XTIttt ettt ettt ettt ettt b bt ettt s h e bt ettt b et b e b bt e b b e eaeenee 59
14.8.3 DUILA-PIAtfOTIN..c..eiiiiite ettt et ettt ettt et et e et eateeatesaeesneeeas 60
14.8.4 CHICKEN-VEISION. ...c..eiiiiiriieieniiiteeteteste ettt ettt ettt ettt et et sbe st be b s e b b eaeenee 60
T4.8.5 EITTIOc..c.eeeiteiieiieitet ettt ettt ettt bt ettt bt ettt sb et b e e bttt beeneenee 60
T4.8.0 GOLEIIV...c.uieteeeie ettt ettt ettt ettt ettt et e e et e e et e eateeabeea bt et e e et eateea bt eabeeabeeateeateeaneenaeea 60
14.8.7 MACKINE-DYLE-OTAET......ccuiiiieiiiiiee ettt et ettt ettt et ettt e e eneeea 60
14.8.8 MACKINE-EYPE....cueiiniiiieiit ettt et ettt ettt ettt e e bt eabeebeemteeatesaeesneeeas 60
1489 OM-EXItuuveuteutitiriietetent ettt sttt ettt ettt ettt et b et et e sb e eat et e st sb e et et b e ebe et et bt eaeenee 61
14.8. 10 SOTEWATEYPE .. .ueeueeeuteeie ettt ettt ettt ettt et ettt et e e bt et e bt eateeateeateeabeembeemteeaeesaeesneeaas 61
14.8.11 SOFtWAIC-VEISION. c..uertiiieuieniinieeitetente ettt ettt ettt et e b bt st et st sbeeat e besbesbeemaenbesbeeneenee 61
14.8.12 C-TUNTIME.enivteitenientieiteteste sttt ettt sttt ettt ettt et sbeeat et et sbeeat et e sbeebeemaenbesbeeneenee 61

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

14 Unit library
T4 .8 13 SYSEEIML. .eutteuiteiieete ettt ettt ettt et et et e bt et e e ae e e ateeateeabeem bt eateeateeateeateeabeeabeenteeateeaneeneeea 62
14.9 EXECULION IMNC. ..c.uveutiiiruientetenieeitetente et entente et eet et e st et easesaesbe et ebesbesbeeseenbesbesbeense bt sbeennensenbeeneennen 62
14.9.1 CPU-TIME. . .eeutintiiieiteterteeete ettt ettt ettt ettt ettt sb et et e st e sbeeae et e sbesbeemaenbesbeeneenee 62
14.9.2 current-MmilliSECONAS......coviviiriiriirieiene ettt ettt ettt sb e sbe b b e ene 62
14.9.3 CUITENE-SECOMAS ...cuveutintirieeiententeeitete sttt ettt et et st ebeeasestesbeeat et e stesbeeaeenbesbeebeemnenbesbeeneenee 62
14.9.4 current-gC-MillISECONAS.....c..evviriiriiriiniireeteeee ettt sbe s 62
14.10 Interrupts and error-handling...........cooeereiriiieeie ettt et e 62
14.10.1 eNabIE-WAITINES. ... eeteeiieiieit ettt ettt et ettt et et e et e e et eabeeabeemeeeaeesatesneeeas 62
T4.10.2 BITOT ..ttt ettt ettt sttt b ettt sb s et et e st sbe et e b e sbeebeesaenbesbeennenee 63
14.10.3 @et-Call-CRAIML.. ..ottt ettt et et ettt ettt see e 63
14.10.4 Print-Call-CRain.......coouiiiiiii ettt et ettt ettt 63
14.10.5 PriNt-@ITOT-TNESSAZE. . cuveeuveeueieuteeuteeteeteeuteeteeteeuteeatesatesabeeabeeatesateeaeesateeabeensesnseentesaeesnseaas 63
14.10.6 procedure-iNfOrMALION.ccuteueeieeie ettt ettt et ettt teeteeatesateeabeembeeaeeeaeesaeesneeeas 63
T4LT0.7 TESEL. . enveeutenietieitetete sttt sttt ettt et ettt e bt ettt bt et et s bt e et et e st sb et b e ebe et et b eaeenee 63
T4, T0.8 WAITIIIZ ...ttt ettt ettt ettt et ettt ettt e ateeateeabeeabeemeeeateeateeateeabeembeeneeentesatesneeaas 63
14.10.9 SINEIESLEP. ..eeuvieeeuretirtieiieiente sttt sttt ettt ettt ettt et e sb et e b e st sb et e b sbeebeemaenbesbeeneenee 64
14,11 Garbage COIECTION.eeutiiiieiieieete ettt ettt ettt ettt et et ettt e et e e ateeatesateeabeeaeeenteeaeesneeaas 64
T4 T 1T @Gttt sttt a ettt ettt na et et be e 64
14.11.2 MEIMOTY-SEALISTICS ...eeuteeuteeuteeutt et et et ettt ettt et et eaee et e et e eateeateeateeateeabeeabeemeeeneesaeesneeaas 64
14.11.3 SEt-TINAIZET ...ttt sttt sb e s b e 64
T4 T 1.4 SBL-ZC-TEPOTIT ...ttt ettt et ettt et et e et e e bt et e eabeeaeeeateeaeeeneeeas 64
14.12 Other CONIOL SITUCTUTES. ...c..eoveeueetirierieetentinieetetente et et sttt te st st sreeseebesbesbeeste bt sbeennensesseeaeennen 64
T4 12,1 PIOTIISE?....eeeeeeee ettt ettt ettt et et et ettt et et e eab e et eat e e et eateeateeabeeabeemeeenteeaeesneeeas 65
14,13 SHING UHIEIES ...ttt ettt ettt et e et et et e eateeateeatesabeeabeeaeeentesaeesnteans 65
14.13.1 T@VETSE-LIST SIIINME..ccuteeutieiieitett ettt et ettt ettt ettt ettt et e et eate e et eabeeabeemeeenteeaeesneeeas 65
14.14 Generating uninterned SYMDOIS........cc.ciiuiiiiiiiiieiieie ettt ettt et ettt see e 65
T4 14T EIISYIML. ettt ettt ettt ettt ettt et e et e eat e et e e bt e at e et e eateeateeabeeabeemteeateeateeneeeas 65
14.14.2 string uninterned-SYMDOL.........cociiiiiiiiie e 65
14.15 Standard INPUL/OULPUL.eiuieiiee ettt ettt ettt et et e ate e testeeabeeateeaeeeaeesaeeeas 65
T 15T POTEZ ettt et ettt ettt et et e e bt et e e a bt eat e e ateeateeateeabe et e eateeateeateeneeea 65
T 152 PIINE ettt ettt et et ettt ettt et e ea bt et e ea bt eateeateeateeateeabeeabeenteeateeateeneeeas 65
T4 15,3 PIINE ettt ettt ettt ettt e et et e et e bt e bt eaeeeateeabeeabeemteenteeaneenteeas 66
14.16 User-defined named CharaCterS.covevueruiririiriininieeenenieeteteste ettt eee et ene it b ennes 66
14.16.1 CRAT-NAIME. ...c.evieireieiieitetene ettt ettt ettt ettt ettt sbe et et b ebeesaebesbeeneenee 66
T4 17 BLODS...iiteeee ettt bttt h ettt aes 66
14.17.1 MAKE-DIOD...c..eiieiiiiiiiieeee ettt sttt bbbt st 66
T4 172 DIOD...c ettt ettt ettt naen 66
T4.17.3 DIOD-SIZE.....eenviieeiieienieeteete ettt ettt et ettt st sttt sb et sb e s bbbt eaeenee 67
T4 174 DLOD SEIIIZ.c..teeuteeniteie ettt ettt et ettt et et e e et e et et e e et eabeeabeeateeatesanesneeeas 67
T4.17.5 SEENG BLOD....eiiiiiiiee ettt et ettt ettt et e et e e e aeeseesneeeas 67
T4 176 DIODZ ettt ettt ettt 67
T4.18 VECLOTS. .ttt ettt ettt ettt et b ettt sb et e b s bt s bt et e b e s bt sbt et e bt ebeeanentenbeeaeennen 67
T4 18,1 VECLOT-COPY L.ttt ettt ettt ettt ettt et ettt et e eat e e et eabeeabeeateeateeanesneeeas 67
14.18.2 VECLOT-TESIZE. .. .eeuvenveiireeeienienieeitete sttt ettt ettt et e st e bt et e e sbesat et e stesbeeat e besbeebeemaenbesbeeneenee 67
14.19 The unspecified VAIUE.......c..coceecuiriiririeieiireet ettt sttt ettt 68
TA.19.T VO .niiiiiieieeeteee e e t e e e e e e t e t e e e t e t e bt e t e t e te s e s at et st sb et be bbb b eaeenee 68
14.20 CONMUATIONS. ..c..eetetirueetententeeitetente et etent st eetestesue et esestesbeestetesbesbeeseenbesbesueensenseebeennensenseeneennen 68
T4.20.1 CAIl/CC vttt ettt ettt ettt ettt sb et s b e s bbb e enee 68
14.20.2 CONNMUATION-CAPIUTE.......eeutieutteuteeuieeteeteeute et eteeteeateeaeeeabeeabeeateeatesaeeemseeaseeaseenseeneessesneeans 68
14.20.3 CONUNUALION.....couviiiiiriieienienieetete ettt sttt ettt ettt et e sbe et e b e sbesbeeaeesbesbesbeesaenbesbeeneenee 68
14.20.4 CONUNUALION-ZIATTeitiiiieit ittt ettt ettt ettt e et et et eaeesaeesneeeas 68

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

14 Unit library
14.20.5 CONtINUAIONATEIUITL .. .evvvveieeeieeirieeeeeeeeeeiteeeeeeeeetaaeeeeessessaaeeeeessessssseeeessesssnrsseeesssssrreneeees
| BN 1 1<) - RO RUORRORPPRPPRRPPPURRt
| N B BENC 1< SRR
14.21.2 @OtEI-WItN-SEILET. .. eeteiiteiieit ettt ettt ettt et ettt et et et e e ateeabeeateemteeatesaeesneeeas
14.22 REAAET EXLEISIONS.uvvvvvveeeeeieiiieeieeeeeeettaeeeeeeeeesaaereeeeeeessaaeeeeesssasssaeeeesssssssseseseeesssnsasreesessennnens

15 Unit eval
I5.1 LOAING COAR.....eniiniiiiieie ettt ettt ettt et ettt et e b e et e eateeateeabeeabeeaeeenteeaeesnneeas

IS 1T LOA. ettt ettt ettt ettt ettt et e e et eabe et e et e eateeateeneeea

15.1.2 L0AA-TEIALIVEottt ettt et ettt ettt e e e ateeabeeabeeateeateeateeneeeas

15.1.3 L0AA-N0TSILIY e eue ettt et et ettt ettt et e et et eaeeeaeeeneeeas

I5.1.4 TOAA-TIDIATY. .ccueeieeie ettt ettt et ettt ettt et e e ateeabe et e eateeateeaeesneeeas

153060 SYIEAK-EITON ... e euteeuteeteete et et et et et et e be et e bt eaeeeateeatesabeembeemteeateeaeeeateeabeeabeemeeentesnnesneeans
15.4 Loading eXtension IDIATIESceouietieieeieeie ettt ettt et ettt et et eeeeeaee et eas
15.4.1 1@POSIEOTY-PALN.c...eiuiiiiiiit ettt ettt ettt ettt e et et e e beemteeatesanesneeeas
15.4.2 eXtension-INfOIMAION.cc.cvirerierienereeteteee ettt et ettt et st sbe et e re b ebeesaebesbeeneenee

16 Unit extras
L. T LISt et e ettt ettt e e e e e e e e e e eeeeeeeeeaeeeaeeaaaeaeeaaaaaeaeaaaaaaaa e nnnannnn_n—n——————a——taaatatataaaaaae

72
72
72
72
72
73
73
73
73
74
74
74
74
74
74
74
74
75
75
75
75
75
75
76
76
76
76

77
77
77
77
77
77

vi

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

16 Unit extras
T AT 1011 T SRR 77
L. 1.6 CROP.. ettt ettt ettt ettt ettt et et e e at e et e eabe et e eateeateeateeneeea 77
10, 1.7 COMIPIESS ..c.uveuteeuteente et et et ettt et et et e s e et et e eaeeeaeeeateeabeem bt eateeateeaeeeateembeeabeemteentesaeesnneeas 78
J LT BRI 4 11 7« USRS 78
16.1.9 INEETSPETSE. . .euvieeeurenteniiriietente sttt sttt ettt ettt ettt et et sb e eat et e saesbeeae e besbesbeemaenbesbeeneenee 78
O T 0T ' USSR 78
T O B) 1 L0 i 4 (RS 78
| LT O B 7 1 TSRS RRR 79
16.2 SHIING-POTt EXLETISIONS. . .eeuverrerreruietenteeteetententteetententeeseesestesteestestestesseeseentesbesbeensenseeseensensenseeseennen 79
16.2.1 call-With-INPUL-SIIIIGccueeteiirieeeeiene ettt ettt ettt ettt sbe bbb eaeene 79
16.2.2 call-With-OUtPUL-STIINGcocverririirieieneeeeteteee ettt ettt ettt et ettt sreebe e b b eeeenee 79
16.2.3 With-INPUE-fTOM-SIINGeeveiirierietenieeieeteteee ettt ettt ettt re b b nae b b eae e 79
16.2.4 With-OUtPUL-TO-SIINE..c..ceueereieriereetenieeieetente ettt ettt ete st e sttt etestesbeeaeesbesbesbeemeebesbeeneenee 79
16.3 FOIMALEd OULPUL...c..erveruieietirtieitetente ettt ettt sttt et et sae st et e st sbeeseesbesbesbeesae bt sbeennentenbeeneennen 79
16.3.1 PIINEE ..ottt ettt ettt et b e st b e bbbt eae e 79
TO.3.2 IPTINLE ...ttt ettt ettt bbbt bt enee 79
16.3.3 SPIINEE ...ttt ettt ettt ettt et e et et e et e et e eateeateeneeea 80
J LRI o) v 1 T 1 SRR 80
J O 5 T o 21 o) [T RPN 81
16.4.1 MAKE-NASN-TADIE.coieiieiiiiiiieeeeeee et e et e e e e e e ara e e e e e e ennaaneeeas 81
J LY BN (T) o B 721 o) (- RS R 81
J L R (T T o B 721 o) (S 1 TR 81
16.4.4 hash-table-equivalence-funCHion.ccoecuieiiiiiieiiiiie et 81
16.4.5 hash-table-hash-fUNCHON..........ccouviiiiiiiieee et e e aaaeee s 82
16.4.6 hash-table-MIN-TOAGoooiiiiiiiiiiiiiieee et e e e e e e e e eeaaaaneeeas 82
16.4.7 hash-table-MaX-IOAG...........cooiiiiiiriiiiiieeeeeee e e e e e e e e e e eraaaaneeeas 82
16.4.8 hash-table-Weak-KeYS.........c.eoiuiiiiiiieie ettt ettt 82
16.4.9 hash-table-WeaK-ValUES...........coovvuveiiiiiiiiiiieeee ettt e e e et e e e e e esaaaaneeeas 82
16.4.10 hash-table-has-INItIal2...........cooouriiiiiiiiiiiee e e e e e e e e e raaaaneeeas 82
16.4.11 hash-table-INItIal.......ccvvvviiiiiiiiieiie et e e e e et e e e e e e e enraeneeeas 82
16.4.12 hash-table-KEYSoiiuiiiieiee ettt ettt et et ettt st 82
16.4.13 hasSh-table-VaAlUES.......c.uvvvieiiieieeeeee et e et e e e e e et e e e e e e e enaaaneeeas 83
O O 3 T 1] o B 21 o) (S 1] SRR 83
J OO BT T A 4 T 4 7:) (RS 83
16.4.16 hasSh-tabIe-Tef........cooooieiiiiei et e e e e et e e e e e e eraaaaaeeeas 83
16.4.17 hash-table-ref/defaull............oooouvviiiiiiiiiiiee e e e e aaeee s 83
16.4.18 NaSh-taDIE-EXISTS 7. ceeeeeiiieeeeeeeeeeee ettt e e et e e e s et e e e e e e e e eaataeeeeeeeennnaeneeeas 83
O L] o B 21 o) (ST o TR 83
16.4.20 hash-table-update!]...........oci ottt et 84
16.4.21 hash-table-update!/default...........ccoooiiiiiiii e 84
16.4.22 NaSh-taDlE-COPY..cuuteiiiiietieit ettt ettt et et ettt et ettt et e et et eaeeeaeeeneeeas 84
16.4.23 haSh-table-AEIEtE]........evveeeiiiieeeeeeee et e e et e e e e s eraaaaneeeas 84
16.4.24 hasSh-tabIE-TEIMOVEL........eviiiiiiieeeiie ettt e e e e e e aa e e e e e e e enaaaneeeas 84
16.4.25 hash-table-TNEIZE........eeiuieiieiieie ettt ettt ettt ettt et et teeeesneeeas 85
16.4.26 hash-table-MEIZeL......ccc.oiiiiiiiiee ettt et ettt s 85
16.4.27 hash-table-TNaP.......coouiiiieiiee ettt et ettt ettt ettt et eaeeeeeeneeeas 85
16.4.28 hasSh-table-fOld........ccoouvriiiiiiieeeeee et e et e e e e e eaaaaree s 85
16.4.29 hash-table-fOr-€aCh..........cooiiiiiiiiiiiieeeeeeee e e e e e e raaaeee s 85
16.4.30 hasSh-table-Walk........ccoouvviiiiiiiieieeiie ettt e e e e e e e e e e e e e enaaaneeeas 85
16.5 HASH FUNCHONS.ccoiiiiiiiiiece ettt e e e e ettt e e e e eeaaaaeeeeessessaaeeeeeesssnssaareeeessennnenes 85
16.5.1 NUMDET-NASKL.....oeiiiiiiiiieieee et e e e et e e e e e e eaatae e e e e e e esnnaaneeeas 86

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

16 Unit extras
16.5.2 0DJECt-UIA-NaSK.....couiiiiiiii e ettt 86
16.5.3 SYMDBOI-NASH.couiiiiiiie et ettt ettt e 86
16.5.4 KEYWOTA-NASH.......oiiiiiiiii ittt ettt et s 86
16.5.5 SING-NASH....c.eiiiiii ettt ettt ettt 86
16.5.6 SrING-CI-NASKL...cueiiiiiiei ettt et et ettt e 86
16.5.7 €Q7-NASN ...ttt et et ettt et 86
16.5.8 €QV7-NaASH.....iiiiiii ettt et et ettt 86
16.5.9 €qUal7-Nash......co.eoiiiiiiiie et 87
LO.5.T0 NASH.....eiitiieite ettt ettt ettt ettt naen 87
16.5.11 hash-Dy-TdeNtItY.....ceoueeiieiieie ettt ettt ettt et ettt eateeeesaeeeas 87
T0.6 QUEUES.veiieitiie et e ettt e ettt et e e e et e e e eette e e eeataeeeeetaeeeeeasaeeeassese e ssseeeeasseseesssseeassseeeassssesnsseeeans 87
TO.6.1 LIS QUBUL.....cueeeueeenieete ettt ettt ettt et ettt ettt et et e et e et eateeateeateeateembeembeemeeenteeaeesneeeas 87
16.6.2 MAKE-QUEUEL.......eoueiiueieieeit ettt ettt ettt ettt et et e et e bt et e eateeateeabeeabeeateeaeesaeesneeeas 87
TO0.6.3 QUEBUE ...ttt ettt ettt ettt ettt et e bt et e et e et et e eat e e bt eabe et e eateeateeateenteeas 87
160.6.4 QUEUE LISL....iiuiiiuiieiiieie ettt ettt ettt ettt et et e et e bt et e et e eateeabe et e eateeateeateeneeeas 87
16.6.5 QUEUE-AAA!ottt ettt et ettt et ettt eaee e 88
16.6.6 QUEUE-EIMPLY Z...neiiniieiieeit ettt ettt ettt et ettt et e eate et e e bt et e eateeateeateeabeeabeemseeneeeaeesneeaas 88
160.6.7 QUEUETITSE. ..ttt ettt ettt ettt et e et e bt et e eateeateeabeeabeemteeneeeatesneeaas 88
16.6.8 QUEUE-LASE.cueeeueienieeie ettt ettt ettt et ettt et e et e e at e e bt et e et e et e eateeateeneeea 88
16.6.9 QUEUE-TEIMOVEL....c.eiiiiiiiiiiiiiitieteteste ettt ettt ettt ettt sb et sb e sbe e b sbeeae e 88
16.6.10 qUEue-PUSh-DACK!.......coouiiiiii ettt 88
16.6.11 queue-push-back-TiSth........cocuiiiiiiii e 88
L0.7 SOTEINE ...ttt ettt ettt ettt ettt ettt et et e bt eateeateeateeabeembeemteemteeatesateeateeabeeaseentesaeesataans 88
LO.7.1 INETEE. ...ttt ettt ettt ettt ettt b e bttt sb e bt et e st e sbeeat et e sbeebe e e e b e sbeeneenee 89
10.7.2 SOTL..eutiiieiteieteett ettt ettt sttt ettt et bt et e b e bt et et e sb e eat et e st sb e eat et bt ebe et et e b eaeenee 89
16.7.3 SOTLEAT. .. ettt ettt ettt ettt et ettt ettt sb et e e st sb et e b s b ebe e e et e sbeeneenee 89
16.8 RaNAOM NUIMDETS.c..eouieieiiriiriieienieeiteteteeie ettt ettt ettt st sbesbe et bt sbeesaentesbeeaeennen 89
16.8.1 TANAOMI-SEEA. ...ttt ettt ettt ettt ettt sb et sb e sbe e e b b eaeenee 89
16.8.2 TANAOMNL. ..ottt ettt ettt ettt et e sbe et e b e sbesbe et et e sb e ebeesaenbesbeennenee 89
16.8.3 TANAOIMNIZE....c..cnveveeeeeieiieitetente sttt ettt ettt ettt e b e st e e st sbe et e b s b ebeemaebesbeeneenee 89
16.9 INPUt/OULPUL EXLENSIONS.....veuverrerueetenterteetententeeitetenteeteetestesteeatetestesseeseentesbesbeensensesbeesnensensesseensen 89
16.9.1 MAKE-INPUL-POIL......eiiiriiriieieniirieetetene ettt ettt ettt et et e bt et et e stesbesaeesaesbeebeesaesesbeeneenee 90
16.9.2 MaAKE-OULPUL-POTLcuveiiriieieniirieeitetenie ettt ettt ettt ettt e b st sbe st et sbeebeesaebesbeeneenee 90
16.9.3 PIOLY-PIINE.c..cutiriieieteniiriieiente sttt sttt ettt et ettt et et et e sbeeat et e sbesbeeaeebesbeebeeneensesbeeneenee 90
16.9.4 pretty-print-Width..........coceviriiiriieeee ettt 90
16.9.5 TRAA-DYLE...couviniiiieieierieteere ettt ettt ettt sttt ettt ebe e b 90
16.9.0 WITLE-DYLE.......eviuieitetirtiriietente sttt ettt ettt ettt et ettt et e st sbe et e b sb e ebeemaebesbeeneenee 90
16.9.7 TERAA-TILC......ccutentiiieieiertete ettt ettt et et bttt sb e ebe e b bt eae e 90
16.9.8 TRAA-IINE....ccueiiiiieiiiieriieteee ettt ettt ettt ettt et et bbb bt e b eae e 91
16.9.9 WITLE-IINE.eentiiieiiiiiniieeeee ettt ettt sttt ettt s bbb bt eae e 91
16.9.10 TEAA-LINES.cuveveeuteieiiriieiente sttt ettt ettt ettt ettt sttt et sbe et et b sbe e ebesbeeneenee 91
16.9.11 T€AA-SIIINEG ..c.veveeetenteriieieetente ettt ettt ettt ettt ettt sttt e st sbe et e st e sb e ebe et ebesbeeneenee 91
16.9.12 1€AA-SIIING L.ttt ettt ettt sb et sb e s bbb e 91
16.9.13 WITEE-STIINE.....eveeurenteieeieeiente sttt ettt ettt ettt et e sb e eat et e st sbe et e b e sbesbeemaenbesbeeneenee 91
16.9.14 1€AA-OKEIL...c..euieiieiiiieiteee ettt ettt ettt ettt sb et sb e ebe et b eae e 91
16.9.15 With-eTTOr-0UtPUL-T0-POTT . ..cvirteriieiinierieetetinte ettt ettt sttt et et eaee bbb sae b b eaeenee 92
16.9.16 With-INPUt-FIOM-POTL...c..eoiiiriiriiiieiinieeecteeee ettt ettt ebe b s eae e 92
16.9.17 With-OULPUL-LO-POTL..c..eruteiiiirierieiente ettt ettt ettt ettt sbe st be b b esee b e b eaeenee 92
16,10 STINEZS.c..eeuvetiteeteterieetet ettt ettt ettt et et b ettt sb et e b e s b e s bt e st et e s bt sbeente bt ebeennentenbeeneennen 92
LO.10.1 COMCuutinriiieniiiiiteteterteet ettt ettt ettt b ettt b et e e st sb et e b e sbeebeemaenbesbeeneenee 92
16.10.2 SIINZ..ccueeutetirieetententeeetete sttt sttt ettt st ettt bt et et e sbe e bt et e st e sbeeat e besbeebeesaenbesbeeneenee 92

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

16 Unit extras
16.10.3 SIINZ-CROP.eueeiietiniiiieee ettt ettt et sa e st besb e sbe e be b eaeene 92
16.10.4 StrNG-CROMIP. .. .cotiitiiiiieieriereeteee ettt ettt ettt sbe et et sb e sbe e e b e b eaeenee 93
16.10.5 StrNG-COMPATE3.....c..oruiriieieniiriertetente ettt ettt ettt et sbe et este st sbeeaeenbesbeebeesaenbesbeeneenee 93
16.10.6 SIIINZ-INEISPETSE....c..enveeeeureterieeitetentesieetente et ettetesttebeeasetesbesatesestesbeeaeesesbesbeensensesseemeenee 93
16.10.7 SENE-SPLIL...c.tiritetetiriiriieere ettt ettt ettt ettt et sb et sb e ebe e be b eaeenee 93
16.10.8 StrNG-LrANSIALE.......octiriiriieierierieeteese ettt ettt ettt sb e ebe e b e 93
16.10.9 Sring-translate™...........cocuevirirerieeneeecte ettt sttt sttt 94
16.10.10 SUDSIIINZT. ..ottt ettt ettt ettt ettt et ettt sbe bt e st sb e sbeemaebesbeeneenee 94
16.10.11 SUDSIINZ-TNACK. c..cuveveeieieniirieeiietenie ettt ettt sttt ettt et et st sbe et et sbesbeenaenbesbeeneene 94
16.11 COMDINALOTS ...uvviiiiiiieiiiiiieee e ettt ee e e e eeaee e e e e e e e essaaeeeeeeeessaaaeeeeessssssaaaeeeeessasssseseseeesssnssasneeeessannrnens 94
TO LT T AIY 7.ttt ettt et b ettt s b ettt sh et b e ebe et b e s b b enee 94
LT N Vo) 1 TR 94
TO.11.3 AIWAYS Tttt ettt ettt et ettt et et bbbt et b e s b e enee 94
J LI B oA o TR 95
16.11.5 CONSTANLY . c..euviieeitetiriieieeteste ettt ettt sttt et et sbe st ettt sbe et e b sb e sbeesaenbesbeeneenee 95
16.11.6 COMPIEIMENL....c..eeuiiiiiiriieienienieetete sttt ettt ettt ettt sbe st et st sbe et e besbesbeenaenbesbeeneenee 95
L6.11.7 COMPOSE....uvemtiiieutentintiriteiente sttt sttt ettt ettt ettt et sbe e et e e stesbe et e besbeebeemaenbesbeeneenee 95
16.11.8 COMJOIIL..uteutintiiieiteierteeitetente sttt ettt ettt b ettt sb et e b e st sb et e b e sbeebeemaenbesbeeneenee 95
16.11.9 dISJOIML vttt sttt ettt ettt ettt ettt et ettt sb et e b bt ebeema et sbeeneenee 96
| LT L0 =T e « DRSS 96
LO. T LT T APttt et ettt et ettt et et et e et e e et e et e et e et e et e eateeateeneeea 96
TO. 1112 TAEIEILY...ccuventiiieiieienteeteteste ettt ettt ettt ettt ebe st bt et be b sbeemtebesbeeneene 96
LO. 1113 PIOJECE..eeuventiiieiteienieeitete sttt ettt et ettt et et sb sttt sbe et e b sb e ebeemaebesbeeneenee 96
O O 3 T o RS RT 96
LO. 1115 MOOP. ettt sttt ettt ettt ettt bt et ettt sbe et e b e sb e ebeesae b e sbeeneenee 97
| LY B O o TR 97
J L B O A = STyt el 5 o) o RS RR 97
16.11. 18 TINE-SECLIOM.c..cueeuieiiriieieiesteetete sttt ettt ettt ettt ettt sbe et be b b emaebesbeeaeenee 97
16.12 BINAry SEATCHING.....c..eeveieriiriieitetenteeteetenteste et ettt ettt ettt st sbesbeesa bt sbeesnensesbeeaeennen 97
16.12.1 DINATY-SCATCH.....coueeiiiiriieienierieeteteste ettt ettt ettt ettt sb et sb e sbe e be s b eaeenee 97
17 Unit srfi-1 98
18 Unit srfi-4 99
18.1 MIAKE- X X K VECTOE ...ciiieeteeiieeee ettt e e e eeee e e e e e e et e e e e e e esaaaeeeeeeseessaaaeeeeessessaeeeeeeesssnssaareesessannrrnns 99
18.2 UBVECIOT DIOD.....eiiiiiiiiiiiiiee et e e et e e e s e e aaae e e e e e seesateeeeeesssnsaareeeessennenes 99
18.3 SEVECLOT DIOD....eiiiiiiiiiiiieiece ettt e e e e e et e e e e e e et ae e e e e s eesaaaeeeeeesssnnsaareeeessenrnnes 99
R B L3 =Tei o)l o) (o) o NP 99
18.5 STOVECLOT DIOD.....ccciiieeiiieiiie ettt e et e e e ee et e e e e e s e eeaateeeeeesssnsaareeeessennenes 99
B R R YA Te1 o) il o) (o) o WSRO RPN 99
18.7 SB2VECLOT DIOD....coiiiiiiiiiiieie et e et e e e e e ettt e e e e e e eaateeeeeesssnsaareeeessennenes 99
BRI AL Te1 1) gl o) (6] o TOU RPN 99
B I (T A Te1 1) gl o) () o O ORPPRRRRRRRRNE 99
18.10 UBVECLOr DIOD/SNATEM........cooieeeeeiiiieeeeeeeeee e e et e e e et e e e e e e esntaeeeeeesennanes 100
18.11 S8VECLOr DIOD/SHATEA.........coiieeeiiieieieeeeeeee et e et e e e e e e rnaar e e e e e s eenanes 100
18.12 U16VECLOr DIOD/SHATEd.ot e e e e e e e e rnaar e e e e e s eenanes 100
18.13 S1OVECLOr DIOD/SNATE.......co it e e e e e e raar e e e e e s eenanes 100
18.14 U32VECtOr DIOD/SHATEd.......co et e e e e e e e e rsaar e e e e e s eenanes 100
18.15 S32VECtOr DIOD/SNATE.......oo it e e e e e e et e e e e e s eenanes 100
18.16 £32VECtOr DIOD/SHATEM........cooceeeeeeieieeeeeeee et e e e e raar e e e e e eenanes 100
18.17 fOAVECLOr DIOD/SHATEM..... ...t e e e e e e et e e e e s eenanes 100

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

18 Unit srfi-4
I8.18 DIOD USVECTOLciiiiieeiiiiee ettt e e e eee et e e e e ettt e e e e e e eaateeeeseesssaaaaeeesessssssaseesessennnnees 100
18.19 DIOD SBVECHOT.....ccciiiueeeeiieeeeeetteeee e ee ettt e e e eeeee et e e e e e et aaeeeeeseeeaateeeeesssssssaaneesesssssasseeeessennnenes 100
18.20 DIOD UL OVECTOL......cciueveiiieeeieeeiieeee e ee ettt e e e eeee e e e e e e et aae e e e e e eesaaaeeeeeessssnsaaseesessssssseseeeessennnenes 101
18.21 DIOD STOVECIOT. ... iiueeeeiiieeeeeeeteeeee ettt e e ettt e e e e ettt eeeseeenaaeeeeeeesssaaaaeeesessssssaseeeessannnnnes 101
18.22 DIOD UB2VECHOL......cciueeeeieeeeeeeetteeeeeeeeeette e e e e e eeeaaee et e e e s eesaaeeeeeseesssaseeeeesssanssaseeesessssssssseeeessannneres 101
18.23 DIOD S32VECIOT.....cciiueeeiieeeeeeeeieeeee e e e eeette et e e e e et e e e s eetateeeeessesaaaeeeeesssssasaeeeesesssssasseeeessannneees 101
eI) (6 o T SR ATt o) SRR 101
18.25 DIOD fOAVECTOL.cciiueeeeieee ettt e e e e et e e e e e e et e e eeeeesesasaaeeeeesssssaareeeessennnnees 101
18.26 DIOD UBVECLOI/SNATEM.oiieeeriiiiiieeeeeeeee ettt e e e e et e e e e e e eesaareeeeesennanes 101
18.27 DIOD SBVECIOI/SNATE.........coiieeeeieiieeeeeeeeeee ettt e e e e et e e e e e e essaareeeeesennanes 101
18.28 DIOD UTOVECLOI/SNATEd. ...t e e e e e s e ersaar e e e e e s eenanes 101
18.29 DIOD STOVECIOI/SNATE........oo ettt e e e e e e e e e esnaareeeeeseenanes 101
18.30 BIOD UB2VECLOI/SNATEd. ...ttt e e et e e e e e e e enaareeeeeseenanes 101
18.31 DIOD S32VECIOI/SNATEM........co it e e e e e e et e e e e e e eenaareeeeesennanes 101
18.32 DIOD f32VECLOI/SNATEM........co oot e e e e e e e rstar e e e e e s eenanes 101
18.33 DIOD fOAVECLOI/SNATEM........co et e e e e e e e raar e e e e e s eenanes 101
18.34 SUDUBVECTOLuuueuiieiiitiiiireieeitee ettt ettt eeee e et e e e e e e et eeeeeeeeeeeeeeeeeeeeeeeeeaesassssssssssssssssssssssssssssssenrsnnenees 102
18.35 SUDULOVECIOL.....ciiiiiiieieeiie ettt et e e e e et e e e e e e eaateeeeesesssaaaaeeeeessssassaseeeessannnenes 102
18.30 SUDUS 2ZVECION ... eiiiiiiiiieiiiee ettt ee ettt e e e e ettt e e e e e esateeeeeseeesateeeeeessssasaaeeesesssssaaseeeessennnnres 102
18,377 SUDSEVECTOTuuueiririiiiiiiitereeeteeee ettt ettt et e e et e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeaeaeasssasssssssssssssssssssssssssesrsnnnnees 102
18.38 SUDSTOVECTOT.......cciiiiieueeiiieee ettt ee e e e eeet et e e e e eeeaae e e e e e seesaaeeeeessessateeeeessssssnasreesessssasraseesessennneres 102
18.30 SUDS32VECTOT. .. .uuuuuerveieieiirereeeeeteee e ee et eeaeaesessasssssssssssssssssssssssssssesssnnnnees 102
T840 SUDT32VECIOL. .. eiiiiiiieeieieiie et eeee e e e e e et e e e s e e eaateeeeeeesssaaaaeeesesssssasseeeeesennnenes 102
L1841 SUDTOAVECIOL.eiiiiiiiiieeiiee et e et e e e e et e e e s e e e aaaeeeeeeesssaaaaeeeeesssssaaseeeeesannnenes 102
1842 TEAA-USVECIOL......iiiiiieeeieiee ettt e e et e e e e et e e e e e e eaaaaeeeeeesssasaaeeesesssssaaseesessannneees 103
18.43 TEAA-USVECLOI ..ot e e e et e e e e e et e e e e e e e aaaaeeesessessaaseeeeesennnenes 103
L84 WITEE-UBVECTOLcciiieueeieiee e e eeettteeee e e e eee e e e e e et eeeseesateeeeeseaeaateeeeeessssssaaeeesessssasaaseeeessennnnnes 103
19 Unit srfi-13 104
20 Unit srfi-14 105
21 Unit match 106
22 Unit regex 107
221 GEOD ettt ettt ettt ettt et ettt s bt e s a b e e b et e bt e e bt e e bt e e bt e e eabee s be e e be e e bbe e baeenabeesabeesabeean 107
P10 T (<Y 4o § o NS S T SURUSRURS 107
P -4 10 s X OSSPSR 107
224 TREEXP e uveeeureeeteeenittenuteesttesteeebee e baeesbteesubeesab e e e at e e e abe e e bt e e bt e e bt e e bt e e eabeesabe e e be e e bbe ettt enabeesabeesabeean 107
22D T X P ettt ettt ettt ettt ettt ettt et e b e h bttt e e a e e e b et e bt e e bt e e bt e e bt e e e abee s be e e b et e ba e e baeenateesabeesabeean 108
22 0 TEEEXP e veeeeetieieeitetest ettt ettt et et b e bttt b ettt b e a et h e h e ettt e h e e bbbt bt e st et e e bt et et e st e ebeenten 109
227 TEZEXP-OPUIMNIZE.cuvenviveeuretintieitetente ettt ettt et et eatetestesbeeatenbe s bt ebeessebeebeensentesbesmaensesbesbeemnens 109
22.8 SIINZ-TNALCH. c..c.eiiiiiiiieic ettt ettt sttt b st saeebeenaen 109
22.9 String-MAatCh-POSTHONS. c..cc.vertirtieiieiinieeitetete ettt sttt et ettt et esse st sbe e eneseesbeemnens 109
22,10 SHINE-SEATCHL. ...ttt st h e bt e bt e bt e bt e s bt e sbe e s bt e bt e bt enbeeeean 110
22.11 String-S€ArCR-POSILIONS.....cutiiuiiitiieiieeiieit ettt ettt et et e sb e e s bt e bt e bt e nbeesbeesbeesbeenbeenbeebeeneean 110
2212 SrING-SPIL-TIEIASeeeieiieieie ettt b e st b e an 110
2213 SINZ-SUDSTIEULReeiutiiieitieette ettt ettt et e st e e sb e e sbeesbeesbeesbeesbee bt esbeesbeesbeenbeebeabeensean 110
2214 SING-SUDSTIEULE™.....c.eeiitiiieieiiie ettt ettt e sb e s bt e s bt e s bt e s bt e sbe e s bt e beesbeesbe e bt enbeebeeneean 110
22,15 T ZEXP-ESCAPE. «ccuvteenureeruteertteetteetteentteestteesuteesateesabeeebeeenbteesbbeensteesabeesabeeeabeeebae e baeenabeesabeesabeenn 111
22.16 Make-anChOored-PatteIm........cc.uiiiiiiiiieeierite ettt sttt et e bt e bt e bt e bt e sbeesbeesbeenbeenbeeeean 111

CHICK

Chi

23 Unit srfi-18

EN User's Manual - The User's Manual

cken User's Manual

24 Unit posix

24.1 ConstantS.............ccoeuuee.

24.1.1 File-control COMMANAS.......cccueitiiiiiieiieiieeiie ettt sttt et e st e sbeesbeesbeesbeesbeenbeebeenbeas
24.1.2 Standard I/O file-deSCIIPLOTS.......ceiutiriirieiieeiieeiee ettt ettt et sbe e b e enaeas

24.1.3 Open flags............
24.1.4 Permission bits.....
24.2 Directories......co.ceevevenne.
24.2.1 change-directory...
24.2.2 current-directory...
24.2.3 create-directory....
24.2.4 delete-directory....

24.3 PIPeS..ccseeneenieeniieniienienns

24.3.1 Call-With-TNPUL-PIPEeeieieeiieeie ettt sttt et et e st e bt e bt e sbe e beesbe e beebeebeas
24.3.2 call-With-OULPUL-PIPE....cuteruiieiiieiieeiie ettt sttt et e bt et e st esbe e sbeesbeesbeenbeebeebean

24.3.3 close-input-pipe....
24.3.4 close-output-pipe..
24.3.5 create-pipe............
24.3.6 open-input-pipe....
24.3.7 open-output-pipe..
24.3.8 pipe/buf................

24.3.9 With-INPUE-{TOMI-PIPE.....eveeuriiiriieitetenie ettt ettt ettt sttt s ebe et e bt bt eae et sbeeaeennes
24.3.10 With-OULPUL-TO-PIPE...ceruteruieeuieeiieeite et te et te et e et e st te et te st e sbeesbeesbtesbeesbeesbeesbeesbeesbeesbeebeebeenbeas

24.4 FifOS...ccooeeeeeeeeceas

24.5 File descriptors and low-1evel I/Q.........ccccooiiiiiiiiii ettt

24.5.1 duplicate-filena....
24.5.2 file-close...............
24.5.3 file-open...............
24.5.4 file-mkstemp........
24.5.5 file-read................
24.5.6 file-select.............
24.5.7 file-write...............

112
112
112
112
113
113
113
113

114
114
114
114
114
115
116
116
116
117
117
117
117
117
117
118
118
118
118
118
118
118
119
119
119
119
119
119
120
120
120
120
120
120
120
121
121
121
121
121
121
122
122

Xi

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

24 Unit posix
24.6.1 fIle-aCCESS-TIME. ..c..eetiiiriieieierieetetese ettt sttt ettt ettt sbe et et bt ebe et e bt sbeesneaesbeeanennes 122
24.6.2 file-Change-tiIMIE.cc.eeriiiuiieiii ettt ettt sh e s a e bt e bt e bt e s beesbeesbeesbeenbeebeenbean 122
24.6.3 file-mOodifiCatiON-tIME.cccuerrirririetinieeeetere ettt ettt st sbeeae et b eaeennes 122
24604 FILE-STAL......eeueetiieeitetet ettt ettt ettt ettt s bt bbbt s be et et be e nnes 122
24.6.5 fIl@-POSTLION.eeeieiiiiiie ittt b e sb e s bt e sht e sbe e s bt e bt e s bt e sbeesbeenbe e beebeebean 122
24600 FILE-SI1ZE......eeueeneiieeieeiettetet ettt st sttt et et b e ennes 123
24.6.7 TEZUIAT-TIIE?. ..ottt ettt b e s bt e bbbt bean 123
24.60.8 FILE-OWIIET ..ottt ettt ettt ettt et ettt et s bt bt et bt sbeesa et e bt eanennes 123
24.6.9 fIle-PETMISSIONS.eeuveririietenieniietete ettt ettt ettt ettt bt eate b s bt ebeent e besbeeseeaesbeeanennes 123
24.6.10 fI1-TEAA-ACCESS T ...cuvenviiienieierieetete ettt ettt ettt ettt st ebe et bt sbe et be e ennes 123
24.60.11 f11E-WITER-ACCESS .. uvenrieeeeteieriieitete sttt ettt ettt ettt ettt sttt bt bt et e bt sbeesneaesbeeanennes 123
24.6.12 f1]€-EXECULE-ACCESS nvinneeurenreriirieeteniesitetente ettt et st et et st sbeeatebe s bt ebe et e besbeesaenaesbeeaeennes 123
24.6.13 StAL-TEGUIAT? ...ttt e bt e bt e bt e s bt e s bt e bt esbe e be e bt e bt enbeebean 123
24.6. 14 StAt-AITECTOTY 2ottt ettt e bt e sb e e sht e shtesbe e s bt e bt e s beesbeesbeenbee bt enbeenbean 123
24.6.15 Stat-Char-AEVICET......couiiieiiieriieieteseeeet ettt ettt sttt sttt ettt sbe e ennes 124
24.6.16 Stat-DlOCK-AEVICE.......ccceetiiiriieieese ettt sttt sttt sa b 124
24.6.17 SAt-TITOZ.....eiiieeeee ettt sttt st sttt 124
24.6.18 Stat-SYMIINK?......oiiiiiiiie ittt ettt et et b e sbe e b e sbe e b e beebeas 124
24.6.19 SLAt-SOCKELT.....c.eeeieeniiiiriieterte ettt ettt ettt et et ettt bt bbbt sbe e et bt ennes 124
2477 Changing file attriDULESccoiiiiiiieie ettt ettt sbe e b e b e be e b eeeas 124
24.7.1 FIE-IUNCALE.eeveeeeenteiiieetente ettt ettt ettt ettt ettt s ebe et e bt sbeesnenaesbeeanennes 124
24.77.2 SEt-TIle-POSTLON L......eiiiiiiii ittt sttt et et b e s bt e b e b e b e beebeas 124
24.7.3 chan@e-flle-MOdE.........cocueiiiiiiiie ettt st sbe e b e sbe e b e b e nbeas 124
24.7.4 Chan@e-fIlE-0WNEL.coiiiiiiiieie ettt ettt et e s bt e be e b e beebeebeas 125
2.8 PIOCESSES.....veuvinrteueententieitetentertteutete st steesten bt e bt eat et e s bt sat et e stesbeeat et e e bt ebe et e bt e bt enb et e nbeeatennenheebeennenn 125
24.8.1 CUITENE-PIOCESS-T10l...euiiiiiiiiiieiie ettt sttt sb et e bt e st e e bt e beesbe e beebeebean 125
24.8.2 PATCNL-PIOCESS-T0....eeruiiriieieieeiieeiie ettt ettt e bt e sb e s bt e s bt e sbe e s bt e bt e sbeesbeesbeenbeenbeebeenbean 125
24.8.3 PrOCESS-ZIOUP-IG..c.ueiruiiriieiuiieiiietie ettt ettt ettt e sb e sbe e sbteshtesbe e s bt e bt e sbeesbeesbeenbeenbeenbeenbean 125
24 8.4 PIOCESS-EXECULL.....eeeuvreeteeenittenureeriteestee ettt esbeeenseeesateesateesabeesbeeenbaeensseensseensteesaseesbasenseeenne 125
24.8.5 PrOCESS-TOTKeieiiiieieie ettt ettt b e s bt e b e bt e b b e beas 125
24 8.0 PIOCESS-TUILeeeueeuterttertteeuteauteattesstesttesutesuteahtesseaaseasbeesbeesbeeabeeabeeabtenbeeabeesbeeabeenbeenbeabeensean 126
24.8.7 PrOCESS-SIZNALeeiuiiiiiiiiiieiie ettt e bt sbe e bt e she e s bt e s bt e bt e s bt e s bt e beenbe e bt ebeebean 126
24 8.8 PIOCESS-WAIL....eeueeeeeriieiiteeiteeiteetteette st testtesute st tesatesstesbeesbeesbeesbeesbee s bt e beesbeesbeeabeenbeenbeanbeenbean 126
24.8.0 PIOCESS.....eeueeieieieeeite sttt ettt et et s e sttt e s b e s ae e s ae e e a ettt a e a e b et neene s 126
24.8.10 PLOCESS™...eeeieeeitieeite ettt ettt sttt et ettt e bt e sab e st e st e s bt e bt e e s bt e e nbbeesabeesabeesbaeenbaeenne 127
P T B B (TS5 o FO OSSR 127
24.8.12 CTRALE-SESSION. c..cuveurirririeeuteterieeitete st ettetenteeteeatetesbe e st et estesbeeatebesbeebeensenbesbeeneensesbeeaeennes 127
24.9 Hard and SymbOLIC HINKS.....c..coueeiiriiniriiiiiineeeeneeteteste ettt ettt s 127
24.9.1 SYMBOIIC-TNK?....couiiiiiiiieieneneeere ettt sttt s ettt a s 127
24.9.2 create-SymMDBOLIC-TINKcccciriririiineeeecte ettt 127
24.9.3 1ead-SyMDBOIIC-TNK.....cc.eroieiiiirieieeneeeeee ettt ettt 127
24.9.4 FIlE-TINK ..c..eomiiiiiiee ettt bbbttt 127
24.10 Retrieving user & group iNfOrmMatioN.cccuerierierierierienee e stesttesieesiee st e sbeesbeesbeesbeesbeeneeas 128
24.710.1 CUITENE-USET-10. ..ottt ettt ettt ettt s ebe ettt sbe e et b eeeennes 128
24.10.2 current-effective-USET-1d....c..coerrueriiririeieniet ettt ettt 128
24.10.3 USET-INTOITNALION. c...eeuviiteiteterieetetese ettt ettt ettt ettt et ettt s ebe et e bt sbeesaenaesbeeaeennes 128
24.10.4 CUITENE-ZIOUP-T0....ciiiiiiiieiieeie ettt sttt b et e s bt e s bt e beesbe e beebeebeas 128
24.10.5 current-effective-group-id.........ccooueriiiieiieiiere ettt 128
24.10.6 group-iNfOrMALION.cc.eiiiiiiiiieeite ettt sttt sa e sbe et e bt e s bt e sbeesbeesbe e beebeebeas 128
24.10.7 GOE-GIOUPS ..c.utirueirieiriieite et et st et st e e st e st e st e saeesae e s bt e bt e ae e st et esae e b e ne et neeneen 129
24.11 Changing user & group infOrMAatION.......c..ceeevteriererierienenieeietese ettt ere st eeenesresreenaens 129

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

24 Unit posix
241 1.1 SEE-ZrOUPS L.ttt es 129
24.11.2 INItHALIZE-ZIOUPS ...eeuterrireeentenienieetete st ettt ettt et ettt et et seesaeeatebe s bt ebeemse bt sueennensesbeennennes 129
24.11.3 Set-process-group-idl.......cccoeririeriririeiinineet ettt sttt et 129
24.12 RECOTA I0CKINEcuveviiieiiiiiniieiieiesie ettt ettt sttt st et b sttt sbe s nesre b emnens 129
24.12.1 fH1E-10CK. ettt ettt sttt ettt b e 129
24.12.2 file-10CK/DIOCKINE.coiuiiiiiiiiieiete ettt sttt b e beas 130
24.12.3 fH1E-1EST-10CK ...ttt ettt 130
24.12.4 f18-UNIOCK. ..c..iieeiteieiieteeeree ettt sttt sttt 130
2413 Signal handIing........coouiiiiiiiiieee ettt ettt et e b e b e be e an 130
24.13.1 Set-alarmL...cc.eiiiiiiiiiiieet ettt bbb sttt 130
24.13.2 set-signal-handler!.............cooiiiiiii et 130
24.13.3 Si@NAl-NANAILT.....c..eiiiiiiiii ettt 130
24.13.4 set-sigNal-MasK!.........cooiiiiiii ettt 131
24.13.5 SIGNAL-NASK. ...cueiiiiiiiiiiie ettt ettt et e b e bbb bean 131
24.13.6 signal-masked?..........cooiiiiiiiiie ettt sttt be b as 131
24.13.7 SIgNAl-MASK ...ttt sttt be s 131
24.13.8 signal-unmask!..........coooiiiiiiii ettt 131
24.13.9 SIZNAIETINL.....eveeiiiiiiitet ettt ettt sttt s ettt a e 131
24.13.10 SIZNALKILL..c.iiieiiiiiiieteee ettt s ettt et 131
241311 SIZNAINLeiiiiiiecee ettt s b e bt e bt e bt e s bt e b e bt e s bt e be e be e beebeebean 131
241312 SIZNAIRUP. ..ottt st et b et b e bt e b e b e bt e beebean 131
241313 SIZNAIPC.....eeeeeeeee ettt ettt b et b e b e b e beebean 131
241314 SIZNAIALL...iiie ettt bbbt beebean 132
241315 SIZNAL/SEZV. ..ttt b e bbbt bt b e bt bt e bt e bt e bt e bt e beebean 132
241316 SIZNAI/ADTL. ...ttt sh et b e b et b e bt e bt e b e beebeebean 132
241317 SIZNAITAD....ce ettt s b e s bt e s bt e s bt e s bt e be e s bt e s bt e bt e bt e beebeebean 132
241318 SIZNAI/QUIL...ceueieiieiie ettt b e bt e bt e sht e s bt e s bt e bt e s beesbeesbeenbee bt ebeenbean 132
24.13.19 SIZNAL/AIITIL...c..eoiiiiiiiteieereeteese ettt ettt bbbt st sb e 132
24.13.20 SIZNAI/VEAITIIL. ...ttt ettt sttt et et e bt e s be e s bt e b e sbe e beebeebean 132
241321 SIZNAI/PIOL. ...ttt sttt e st e bt bt e bt e b e bt e be e bt ebean 132
24.13.22 SIZNANIIO. c.ce ettt ettt b e bt e s bt e bt e b e e bt e nbeebean 132
24.13.23 SIZNAI/UIZ ...ttt b e bt e s bt e s bt e s bt e s bt e bt e s bt e s bt e be e bt e bt e beebean 132
24.13.24 S1ZNAL/ChIA....c..iiiiiiiiieiceeee ettt bbbt 132
24.13.25 SIZNAI/CONL. ..ttt ettt b e bt e sht e s bt e s bt e bt e s bt e s bt e beenbe e beebeebean 132
24.13.26 SIZNAL/STOP...eeuteiieieie ettt e bt s bt bt e bt e s bt e bt e bt e bt e bt e bt e bt e bt ebeebean 132
24 13,27 SIZNAIESTD. ¢ttt ettt b e bt bt bt bt bt e bt e bt e bt e bt e bt e be e bt ebean 132
24.13.28 SIZNAI/PIPL...eeuneeeiiieieiite ettt b e sh e s bt e bt e bt e bt e bt e bt e s bt e bt e be e beebeebean 132
24.13.29 SIZNAL/XCPU...euveriteniiiiriietenie sttt ettt sttt ettt et e sa e sbt et et sbeebe et e bt s bt ean et bt eaeennes 132
24.13.30 STZNAL/KESZ ..ttt ettt ettt b e bt e bt e be e beebeebean 133
24.13.31 SIZNAIUST L.ttt st et sb et e bt e s bt e s bt e beesbe e beebeebean 133
24.13.32 SIZNAIJUSTZ....ueeiiieiteete ettt b e s bt e s bt e s bt e s bt e s bt e bt e st e e s bt e be e be e bt ebeebean 133
24.13.33 SIZNAl/WINCR. ..ottt ettt st sb et be e as 133
24.14 ENVITONIMENE ACCESS..c.veeurenrerterreetententeetenteaseentessessesstesestesseessensessesseesensesseesensessessensessessessens 133
24.14.1 CUITENI-ENVITONIICIIL ...c..eeutenterieeutetenieeteeteteeteeetetesteeetetestesueeaeetesbeebeensensesbeensensensesseenses 133
24142 SELEMV.. ittt ettt ettt e a et neene s 133
24 14.3 UNSELEMV. ..ttt ettt sttt s e st e st e st esae e sae e s bt e ae e st e ae e b e e sae e beeneeneenneennees 133
24.15 Memory mMapped I/Oh......coouiiiiiiiieeieeeeeee ettt st ettt ettt s 133
24.15.1 memory-mapped-fIle..........c.ooiiiiiiiiie ettt 133
24.15.2 MAP-TIlE-T0-MEIMOTYeeiuiiiiiiitieiite ettt ettt ettt e bt e st e sbe e bt e s bt e sbeesbeesbeesbeenbeebeenbeas 134
24.15.3 memory-mapped-file-POiNter.........coceiiiiiiiiiiiiieie ettt 134
24.15.4 unmap-file-from-MEMOTY......cccuiiiiiieiie ettt ettt be e bbb enaeas 134

Xiii

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

24 Unit posix

24.16 Date and tiMe TOULNES.....c..ceruterieeiieeiieetiesttertte st e et e steesttesbtesteesbeesueesbeesbeesbeesbeesbeesbeenbeenseenseensean 134
24.16.1 seconds 10CAI-tIME.couiiiiiiiiiii ettt ettt ettt e st e b e b e be e beebeas 134
24.16.2 10Cal-tIME SECOMAS...ceutiiuiiiiiieiieiite ittt ettt sb et e bt e bt e beesbeesbeesbeenbeebeebean 135
24.16.3 local-timezone-abbreVIation.cotiiiiiieiieiierte ettt et sbe e enaeas 135
24.16.4 SECONAS SITIING ..euueiruieiiieiiieeiie ettt ettt et et esb e e sbeesbtesbtesbe e s bt e bt e sbeesbeesbeesbeebeenbeebean 135
24.16.5 SECONAS ULCIIMIE.eeruieiiieiiieiieeite sttt ettt et te st e bt e sbeesbeesbeesbe e s bt e bt e s beesbeesbeenbeenbeenbeenbean 135
24.16.6 ULC-TIME SECOMAS...cuueeruiiiiieiiieiieeite st te ettt ettt e b tesbeesbtesbtesbt e s bt e s bt e sbeesbeesbeenbeebeenbeebean 135
24.16.7 tIME SETIMZ.c..eeeuteiteeiie ettt ettt sttt st et e st e s bt e s bt e sbeesbeesbeesbe e bt e bt e sbeesbeesbeenbeebeanbeenbean 135
24.16.8 SLINZ TIIMIC.....eiueeieiiitieeiie ettt ettt ettt e st e bt e s bt e sbeesbtesbeesbe e s bt e bt e sbeesbeesbeenbeebeanbeenbean 136

P W N) < | A USSP 136
24071 _@XI ittt ettt ettt st b e bt bbbt eheeae et bt eanennes 136

24 18 ERRINO VAULS. ...c.ueiiieiieitieeite ettt sttt sh e bt bt e bt e bt e s bt e sbeesbe e bt e bt ebeeneean 136
24 18,1 ITIIO/PEIIIL ...ttt ettt a e s bt e sbe e s bt e s bt e sbe e bt e bt e sbeesbeeebeenbee bt anbeenbean 136
24 18.2 ETTIIO/MIOCIL. ...ttt ettt ettt ettt et e s bt e e bt e s bt e sbeesbeesbeesbeesbee bt e sbeesbeeabeenbee bt anbeenbean 136
24 18.3 @ITINO/SICR. ...ttt et et e bt e bt e s bt e b e b e bt e bt ebean 136
24184 ETTIIO ML ...ttt et h et e bt e s bt e s bt e s bt e sb e e s bt e s bt e bt e s bt e sbeeebe e bt e beebeebean 136
24 18.5 EITIIO/O .ttt ettt h e bt bt bt e bt e bt e bt e bt e bt e bt e be e bt e bt e beebean 136
24, 18.0 ETTIIO/MOCKEC.eeneeeeiteeite et eiteeite et e st e et esht e et e e s ate s bt e sbeesbeesbeesbeesbeesbte bt esbeesbeeabeenbeebeanbeenbean 136
24.18.7 €ITNO/DAAL ...ttt ettt b e bbbt beebean 136
24.18.8 €ITNO/CRILA. ...ttt ettt b e bbb bean 137
24.18.9 EITIOMOMICILeeiutiieiieeittenittesitee et teetee ettt ettt e sabeesabeesabeesabeeebaeenbbeenbbeesabeesabeesabaeenbeeense 137
24, 1810 EITIIO/ACCES ...euveeeutieeiee ettt eeitee st e ette et e ettt ettt e sabeesabeesabeesabeeebaeenbbeenbbeesabeesabeesabaeenbeeenne 137
241811 @ITNO/MAULL. ...ttt ettt s b e s bt e b e b e b b ebean 137
24,1812 EITTIONDUSY...eeeeeeeitte ettt ettt sttt et ettt et e sab e sabeesabeesabeeeabaeenbbeesbbeesabeesabeesabaeenbaeenne 137
241813 @ITNOMOLAIL ..ottt ettt sb e bt e bt e bt e s bt e s bt e s bt e sbeesbeesbeenbeebeenbean 137
241814 @ITNO ISAIT....eueeeieieie ettt sb e sh e bt e s bt e s bt e s bt e s bt e sbe e beenbe e beebeenbeas 137
241815 @ITNOMNVAL ...ttt sttt a et e bt e bt e s bt e b e sbe e bt e beebean 137
24.18.16 erTNO/MNTILE. ..ottt ettt e st e b b e b e b ebeas 137
24, 1817 EITTIO/MOSPC. e uveeeutteeniee ettt enitte sttt e st e etee ettt enbeeesabeesabeesabeesabeeebaeenbbeenbbeesabeesabeesabaeenbeeanne 137
24 18.18 EITNO/SPIPE. ...ttt ettt ettt ettt et e st e sa e s bt e sbeesbteebeesbe e bt e bt e sbeesbeeabeenbeenbeanbeenbean 137
24.18.19 EITNO/PIPE. ...vinveeerenteieritetente sttt ettt ettt ettt sttt et e st e st e bbbt et e bt sbeestenaesbeeaeennes 137
24.18.20 EITNO/AZAIMN ..ottt ettt ettt e s bt e sb e e sbt e s bt e sbe e s bt e bt e sbeesbeeebeesbe e beebeenbean 137
241821 @ITNO/TOTS. ...ttt s b e s bt e bt e s bt e s b e be e s bt e sbeeebeesbee bt ebeenbean 137
24 18.22 EITNO XIS ...ttt ettt ettt et e s bt e sbe e s bt e s bt e sbe e s bt e bt e sbeesbeeebeenbe e beebeenbean 137
24.18.23 errno/WOouldbIOCK........coiiiiiiiiiie ettt 137

24.19 FINAING f1ES.....eeueetiiieiieieierietetee ettt ettt sttt sttt ettt sbe s sae b ennen 138
24.719.1 fINA-TILES ...ttt sttt e 138

24.20 Getting the hostname and system iNfOrMAation.ccceerieriirienienienieneene et 138
24.20.1 ZEL-NOSI-NAIME.eeiutieeiieeittertee sttt ettt ettt e st e st e sabeeeabeeebeeesbbeesbbeesabeesabeesabeeenbeeenne 138
24.20.2 SyStemM-INFOTTAION.ceiuiiiiiiiiieitie ittt sttt et e sa et e bt esbeesbeesbeesbeenbeebeenbeas 138

24.21 Setting the file buffering MOde............coceriiiiiiiiii e 138
24.21.1 set-buffering-mode!...........coiiiiiiiiiiie et 138

24.22 TerMINAL POTLS.c..eetiriiruieientirtietetente ettt ettt et e st sbtetestesbeeatebesbeebeest e bt ebeessentesnessnensenbesbeemnens 139
24.22.1 teTMINAI-NAINE. ...c..eiiiiiiiieeiie ettt e bt e sb e e bt e shtesbe e s bt e bt e sbeesbeesbeesbeenbeenbeenbean 139
24.22.2 teTMINAL-POTT ...ttt ettt ettt ettt sttt s beebe bbbt eaa et b aeennes 139

24.23 How Scheme procedures relate to UNIX C functions..........cecceeeeeeeenienineenienenenseeneneneenens 139

24.24 WIiNdOWS SPECITIC NMOLES......eeruiiriieeiieiiiiitie ettt ettt ettt et e bt e bt e bt e bt e s bt e sbeesbe e bt enbeebeeneean 142
24.24.1 Procedure CRANGES.........couiiuiiiiiiieieteeite ettt ettt ettt sae e s bt e bt e s bt e sbe e beesbeenbeebeebeas 142
24.24.2 Unsupported Definitions........cccueiiiriiiiiiieiieniei ettt ettt sbe e neeas 142
24.24.3 Additional Definitions.......cccueiiiiiiiieiieiieee ettt sttt sbe e be e an 143
24244 PIOCESS-SPAWIL....cceuveeeuteeenietenireesiteesteesteesbeeenseeessteessteesaseesabeesabaeensseessseessseesseesssasenseeanne 143

25 Unit utils

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

25.1 ENVITONMENE QUETY ...c.ueeiutiitieiiieetieeiteeite ettt testte et e ette st e e sbtesbtesbeesbeesbeesbee bt esbeesbeesbeesbeenbeenbeanbeeneean

25.2.5 pathNamE-AIiTECIOTY ... eeiuteieiieiieetie ettt ettt sttt et e st e bt e bt e b e s beesbeesbeesbeenbeanbeenbean
25.2.6 pAthNAmME-TII@.......ccueiiiiiiiiiie ettt ettt b e be s
25.2.7 pathName-EXEENSION .. .cerutiiuiieiiiiiieettest et te et e et et te st tesbeesbeesbeesbeesbeesbee bt e sbeesbeesbeesbeebeenseensean
25.2.8 pathname-replace-dir@CLOTY.........ceitiiieiieiieitie ettt sttt ettt sttt e be e b e b ebeenbeas

25.5 Iterating over input 1ines and files.........coccoiiiiiiiiiiiiiii e
25.5.1 £OT-ACH-TINE.cveeieeiiiiriieteereteee ettt st sttt sttt st a et

25.8 Funky ports.......

25.8.1 Make-DroadCast-POTt........cccueeiiiiiiiiiieite ettt ettt ettt ettt et e bt e s bt e bt e sbe e beenbeebeas
25.8.2 Make-CoNCAteNALEA-POTt.ceeiiuiiriiiitieitie ettt ettt et e st e b e sbeesbeesbeesbe e beenbeebeas
25.9 Miscellaneous handy things........coceoireerininieieieeereetee ettt s
25.9.1 shift! DEPRECATED.......cccociiiiiiiiniteeteeetetee ettt sttt st
25.9.2 unshift! DEPRECATED......c..coccootiiiiiiieieiteteteneetetene ettt

26 Unit tcp

145
145
145
145
145
145
145
146
146
146
146
146
146
146
146
146
147
147
147
147
147
147
147
147
148
148
148
148
148
148
149
149
149
149
149
149
149
149

151
151
151
151
151
151
152
152
152
152
152
153
153

XV

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

26 Unit tcp

26.13 tCP-TEAA-LIMEOUL.eueeeieiieitie ettt et et e st e bt e sbte s bt e sbeesbeesbee bt e bt e bt e sbeesbeenbeenbeebeeneean 153
26.14 LCP-WITEE-TIMEOUL.eueeeieitieitte ettt ettt et et e bt e bt e sb e e s bt e sbeesheesbee bt e bt esbeesbeesbeebeenbeabeeneean 153
26.15 tCP-CONNECT-LIMEOUL.eetieriieeiieetieetteet et teette et e et e sttesttesbtesbeesbeesbeesbeesbee bt enbeesbeesbeenbeenbeebeensean 153
26.16 tCP-ACCEPLIIMEOUL.eeeietieriieetie ettt ettt et esat et esbeesbte s bt e sbeesueesbee bt e bt esbeesbeenbeenbeenbeabeeneean 153
P W) <1 1115 (S S USTURUSRURS 154
27 Unit lolevel 155
27.1 FOT@IGN POINLETS. ...euteuieetertieeiteeite ettt st e sttesateeutesutesbtesbte s bt e sbeeebeesbee bt e bt enbeesbeenbeenbeenbeabeensean 155
27.1.1 address POIMEET. ...cueiruieriieiiieiieeeie ettt e sttt e sb e e sbeesbtesbtesbe e s bt e sbeesbeesbeesbeenbeenbeenbeenbean 155
2712 AIOCALR.eeueenrireeitetenteet ettt ettt ettt ettt ettt st s h e e bbbt bt et be e naes 155
2713 IO ettt st b e bt bttt he et b e ennes 155

27 1.4 NULI-POINLET. ...ttt ettt ettt e s bt e s beesbt e s bt e s bt e s bt e bt e sbeesbeesbeenbee bt enbeenbean 155
27.1.5 NULI-POINLETZ. ...ttt b e s bt e sbt e sht e s bt e s bt e bt e s beesbeesbeesbe e beebeenbean 155
27.1.6 ODJECE POIMEETeeeeiiiiiiiieeiie ettt ettt ettt e s bt e sbeesheesbt e s bt e s bt e bt e sbeesbeeebeesbeenbeanbeenbean 155

27 1.7 POINEET? ...ttt ettt h e s bt e s bt e sbe e sbeesheesbe e s bt e bt e sbeesbeeabeenbeebeanbeenbean 156

27 1.8 POINIET=2. ...ttt ettt a e s at e s h e s h e e bt e s bt e sbeesbeeebeesbe e bt e bt e sbeesbeeebe e bt e beebeenbean 156
27.1.9 POINLET AAAIESS...c.uvenvitiriieieieniietetese ettt ettt ettt ettt sbe bt ettt saeean et sbe e ennes 156
27.1.10 POINEET ODJECL...eeuutiriieiiieiiie ettt ettt e bt e sbe e sbt e shtesbe e s bt e bt e sbeesbeesbeesbe e beenbeenbean 156

P I T B I 0103 11 1) o) i) AU UR USSR 156
27.1.12 POINEET-US-TEL.....ceiiiiiiiie ettt et sa e bt e b e s be e s bt e beesbe e b ebeebeas 156
271,13 POINLET-SE-TEE.....eeiiiiieiie ettt ettt e bt e be e b e b e nbeebeas 156
27. 1. 14 POINLET-UTO-TEL......eiiiiiiii ettt ettt e s bt e be e b e b e b ebeas 157
271,15 POINLET-STO-TEE ...ttt ettt e sbe e be e b e b e b e nbeas 157
27.1.16 POINLET-UB2-TEI......eiiiiiieie ittt sttt ettt e bt e b e s be e s bt e beesbe e beebeebean 157
27117 POINLET-S32-TEE ...ttt sttt et b e b e bt e bt e s bt e be e be e beebeebean 157
27 1. 18 POINLET-T32-TOf ...ttt sttt sbe e beebeas 157
27.1.19 POINLET-TOA-TET ..ottt ettt e 157
27.1.20 POINLET-UE-SELL....c.eeiriiiiiiiiie ettt sb e sh e sh e e bt e s bt e bt e s bt e sbeesbeenbeenbeebeebean 157
27.1.21 POINLET-SE-SEL ...ttt ettt s bt e bt e bt e bt e bt e s bt e s bt e beenbee bt ebeebeas 157
27.1.22 POINLET-TUTO-SEEL....eieiiiie ettt ettt s b e bt e b e b e b e beebean 158
27.1.23 POINLET-STO-SEEL.....eiiiiiiieiieete ettt sttt ettt b e s bt e b e b e b e beebeas 158
27.1.24 POINLET-UB2-SEE ... ittt sttt e bt e bt et e bt e s bt e s bt e be e bt e beebeebeas 158
27.1.25 POINLET-S32-SEEL ... ittt st h e bt sa et e bt e s bt e s bt e be e b e beebeebean 158
27.1.26 POINLET-T32-SEL. ...ttt ettt b e s bt e b e b e b e nbeebeas 158
27.1.27 POINLET-TOA-SELL. ..ottt ettt b e s bt e be e b e b e nbeebeas 158
27.1.28 ali@N-t0-WOIM.. ettt sb e s bt e bt e bt e s bt e bt e st e sbe e beenbe e bt ebeebean 158
27.2 TAZZEA POINLETS.c..eeuverirueeuretertieitetenteeteetente et eateste s bt sbtetestesbeeatenbesbeebeestebeebeessensesbeennensensesueemnens 159
27. 2.1 LAZ-POINLET. c..eeuviveeieeteteritetente sttt s et e et b et e e st e st et e naesbeeat et e sbeebeemt e bt sbeenaenaesbeeanennen 159
27.2.2 tagZEA-POINLET?...c..eeuiiiiriieteie sttt ettt ettt ettt ettt sbe et et s beebe et e bt sbeesa et sbeeanennes 159
27.2.3 POIMLETTAZ. «..ecuvenveeurenteteritetente sttt steebt ettt s bt et et st s et et e saesbeeate b e sbeebeens e besbeennensenbeeaeennes 159
27.3 Extending procedures With data.........ccccecuerireeiienieninienienieneeieese ettt s sreesaens 159
27.3.1 eXtENd-PIOCEAUIE......c..eoruiiriiiiiiirieiieeteet ettt sttt ae e b ne e eae s 159
27.3.2 eXtended-PrOCEAUIE?........cocueriiriirieienieeitetente ettt ettt ettt sttt sbeebe et e b sbeeanenaesbeeaeennes 159
27.3.3 PrOCEAUIE-AALA.....c.eiiuiiieiiiieeiie ettt sttt e bt st e bt e bt e bt e s bt e sbe e beesbe e beebeebean 160
27.3.4 set-procedure-datal..........cocooiiiiiiiiie ettt ae s 160
27.4 Data in UnManaged MEIMIOTY......c...ceutrutirieriteritesiteettesttesttesttesteesteesseesseesseesbeesbeesbeesbeesseenseanseensean 160
P B o] o) (<ot TS Tt A USSR 160
27.4.2 ODJECt-EVIC-T0-10CAtION.eiiiiiieiitiitte ettt ettt ettt et et e bt e st e e sbeesbeesbe e beebeebean 160
27.4.3 ODJECL-EVICEA ...ttt sb e sh et e bt e bt e b e st e s bt e bt e nbe e bt ebeebean 161

27 4.4 ODJECL-SIZE....eeeeeeeeeeee ettt ettt b e s bt e sbe e she e bt e bt e bt e bt e bt e s bt e bt e bt e bt e beebean 161
27.4.5 ODJECL-TEIBASE......eeeeiiiie ettt ettt sb e s bt e bt e s bt e s bt e b e e bt e s bt e beenbe e bt ebeebean 161

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

27 Unit lolevel
27.4.6 ODJECL-TUNEVICL ... ettt ettt ettt e s bt e sb e e sbtesbtesbt e s bt e bt e sbeesbeeabeesbee bt enbeenbean 161
27.5 LLOCALIVES ...ttt ettt h e s bt s ht e s bt e e bt e e bt e e bt e e bt e e bt e she e e bt e bt e bt e bt e be e she e bt e bt e bt ebeebean 161
27.5.1 MAKE-TOCALIVE.ottt ettt sttt a e bt e b e s bt e s bt e beesbe e beebeebean 161
27.5.2 Make-Weak-10CAtIVE.c..coiiiiiiiieiie ettt sttt b et as 162
27.5.3 LOCAVE ...ttt et h e s h e bt e s bt e sbe e sbeesb e e sbe e bt e bt e bt e sbeeebeenbee bt ebeebean 162
27.5.4 TOCAVE-TEL......eieieie ettt et a e b e bt e st e s bt e beesbe e beebeebean 162
27.5.5 TOCAVE-SEEL ...ttt st h e s bt e bt e bt e bt e s bt e s bt e be e bt e beebeebean 162
27.5.6 LOCAIVE ODJECL...eeuiiriiiiiieeiie ettt ettt et e bt e bt e sbtesbe e s bt e bt e s bt e sbeesbeesbeenbeebeenbean 162
27.6 Accessing toplevel Variables.........couiiiiiiiiiiiiiii e 162
27.6.1 global-DOUNA?......oouiiiieiie ettt sttt s b e bt e b e bt e bt b bean 162
27.6.2 GlODAI-TEL. ...ttt b e bbb bbb s 162
27.6.3 GIODAI-SELL. ...ttt b e bt e b e b e bt e beebean 163
2777 LOW-1EVEL data GCCESS. ...c.utiuiiiiiieiieeiieeite ettt ettt ettt et e bt e bt e bt e bt e sbeesbe e s bt enbeenbeebeeeean 163
2771 BDIOCKTEE ...t h et h e s bt e bt e s bt e bt e be e s bt e s be e be e bt e beebean 163
27 7.2 DIOCKSEL L.ttt s b e bt e h e bbbt e bt e bt e b e bt e be e b ebean 163
P R o] o) (<ot 10 o ST 163
27.7.4 MaKe-TECOTA-TNSLAINCE.coueieuiiiuieitieitte ittt ettt et esbeeshtesbtesbe e s bt e nbee s bt e sbeesbeesbeenbeebeebeas 163
27.77.5 MOVE-TNEIMOTY L.ttt ettt sbe e bt e bt e s bt e s bt e bt e s bt e sbeesbeenbe e beenbeenbean 164
27.77.6 NUMDEI-0f-DYLES.eeiuiiiiiiiiiieiie ettt e st e bt e bt e sbe e bt e bt e s bt e sbeesbeesbeenbeebeenbean 164
27.77.7 NUMDEI-0F-SI0TS. ...ttt ettt ettt e bt e bt e b e beenbeebeas 164
27.77.8 TECOTA-TNSTANCET.... ettt ettt ettt h e sb e sbt e shtesbe e s bt e bt e s beesbeesbe e bt e beebeenbean 164
27.7.9 TECOTA VECTOT...ccutiiiuiiieiteeitt ettt ettt ettt e st e st e sabeesabeeebteenbbeenabeenabeesabeesabaeebeeenne 164
27.8 Procedure-call- and variable reference hooks...........cocuoiiiiiiniiniiniinieeeeeeeee e 165
27.8.1 set-invalid-procedure-call-handler!..............cccooiiiiiiiiiiieee e 165
27.8.2 unbound-variable-ValUe...........cccoiiiiiiiiiiiee et 165
27.9 MAIC.c.eveeiteiieiteteteet ettt ettt ettt et sttt h e s bt ettt h e e bbbt be et et s bttt e nheebeenaen 165
27.9.1 ObJECE-DECOME!......eiiiiiiieiiierieeteese ettt sttt sttt st sbe e ennes 165
27.9.2 MULALE-PIOCEAUIE........eviruieuteierieeitetene ettt ettt et ste et et e st sbe et ebe s bt ebeensenbesbeennensesbeeaeennes 166
28 Interface to external functions and variables 167
29 Accessing external objects 168
29.1 FOTEIGN-COUE....c..eereiiiiiriieietert ettt ettt ettt sb ettt s bt bt ettt e bt et et e sbesaaentesaesbeemnens 168
29.2 fOT@IGN-VAIUE......coueeiiiieiieieterteet ettt ettt ettt ettt e be ettt e be et et sae st enesaesbeemnens 168
29.3 fOr@IGN-AECLATE.......cctirtiriieietirtteteteee ettt ettt sttt st sbe et bttt e st et e s bt s e etesaeebeemnens 168
29.4 defiNE-fOTCIZN-TYPE...c.veeveeererertieitetenie ettt ettt ettt set et st sbeeate b st sbe et e bt e bt esbentesbesanensenaesbeemnens 168
29.5 define-foreign-variable..........coceueriririeriiniineecereet ettt ettt s 169
29.6 define-fOrIZN-TECOTA.ccuertiriiriieiinieeieetete ettt sttt et ettt be ettt bt et sae b emnens 169
29.6.1 TYPENAME-SLOTNAME.......cccootititiiitetenentetet sttt ettt 169
29.6.2 TYPENAME-SLOTNAME-SEL......coctrteiiiiniieteieniteteentestetete ettt 170
29.60.3 COMSIIUCTOL ...ttt ettt eite ettt testte st e e st e e shteehte s b tesb e e sbeesbeesbeesbeesbee bt e bt esbeesbeeabeenbeenbeanbeenbean 170
29.60.4 AESIITUCTOL.euteeeeeeete ettt ettt ettt et e st e e shteeh e e s ate s bt e sbeesbeesbeeebeesbee bt e bt esbeesbeeabeenbeenbeenbeenbean 170
29.60.5 TEMAIMNE.eueeeuiieiieeiie ettt et ee e b te st e e shteshteshteeateabeesbeesbeesbeesbeesbeesbee bt e bt esbeeabeebeenbeenbeenbean 170
29.7 defiNe-fOrIZN-ENUIILcocuertiriirieiinieeitetete ettt ettt et sb et sbeebe et et e bt eseesaesbesasesnesaesbeemnens 171
29.8 fOreig@n-1ambda.........cceeieiiriiriiiiiee ettt ettt e 172
29.9 foreign-1ambda..........cccoviririiiiiiece ettt sttt sr e 172
29.10 foreign-safe-1ambda..........c..coeeiiriiiiriiii et e 172
29.11 foreign-safe-1ambda™...........c..ccooueiiiiiiiiinic e e 172
29.12 fOT@IZN-PIIMILIVE .c..etirueeiretirtieiteteste ettt ettt ettt sbeeate b s bt sbe et et e e bt essesaesbeeseennenaesbeemnens 172

XVii

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

30 Foreign type specifiers 174
30.1 SCHEIME-ODJECL. ...ttt st b e s bt e s bt e bt e bt e s bt e sbeesbeesbeenbe e bt ebeenbean 174
L0257 oo o) O RSP SUUSSTRPR 174
30.3 DYLe UNSIZNEA-DYLE....cueiiiiiiiiiiie ettt sttt e st e bt e bt e bt e bt e sbeesbe e bt e nbeenbeeeean 174
30.4 char UNSIZNEA-CRAL........oiiiiiiiie ettt ettt b e be e e s 174
30.5 ShOIt UNSIZNEA-SNOTT.......euiiitiiiiiieiieeie ettt sttt b e sb e bt e bt e sbeesbe e bt e nbeenbeeeean 174
30.6 int unsigned-int int32 UNSIZNEd-INt32.......cociiiiiiiiiiiieer ettt 174
30.7 integer unsigned-integer integer32 unsigned-integer32 integertd...........coveeveereeneenieneeneennenn 174
30.8 10NZ UNSIZNEA-TONE....cuiiiiiiiiiiieie ettt sttt b e sb e b e be e sbeesbe e bt e sbeenbeeeean 174
30.9 fIOAL AOUDIC.......ooiciiiieiieciie ettt e et ee et e e tbe e s abe e sbeeesbeeessaeessaeesseessseassseeassesenseenn 175
30,10 NUIMIDET....c.tte ettt eeteeetee et et e et e estteeebeeebeessbeeesseeessseessseassseasssaeassesassseessssesseesseasssesassessnseenn 175
30,11 SYMDOL....ceiie ettt b e s bt s bt e s bt e s bt e bt e bt e bt e bt e bt e bt e bt e bt et ebean 175
30.12 SCREIME-POINLEL.eeiuiiiiieiiieitie ettt ettt et e st esb e sb e e s bt e sbeesbeesbee bt e bt e sbeesbeenbeebeabeeneean 175
30.13 NONNUII-SChEME-POINLET........couiiiiiiiiiiiiiieiie ettt sttt ettt e sbe e b e bt e b e nbeeeean 175
O o 11010111 oSS USSR 175
30.15 NONNUIL-CoPOINEET.cueeiiiiieitie ettt ettt ettt e sb e s bt e s bt e sbeesbe e bt e bt esbeesbeesbeenbeenbeabeenbean 175
L0200 o)) o T USRI 176
30.17 NONNUII-DIOD.......eiiiiieciee et ee et e st e e s v e e s b e e e sbeessbaeessaeesseessseasssaesssessnseenn 176
30.18 u8vector ul6vector u32vector s8vector s16vector s32vector f32vector fodvector................... 176
30.19 nonnull-u8vector nonnull-ul6vector nonnull-u32vector nonnull-s8vector
nonnull-s16vector nonnull-s32vector nonnull-f32vector nonnull-f64vector............cceeevveerveennreennee. 176
30.20 St 1.t eute ettt ettt ettt ettt b e s b e s bt e s bt e e bt e sbeeeb e e e bt e s bt e she e eh e e bt e bt e bt e beeeheeebe e bt e beebeebean 176
30.21 NONNUIL-CoSIIINE ..ttt ettt sttt et e b e s bt e s bt e sbeesbeesbe e bt e bt esbeesbeesbeenbeenbeebeeneean 176
30.22 [NONNUII-] CoSIIINE™. ...ttt b e bt bt e bt e bt e bt e sbeesbe e bt e nbeebeeneean 176
30.23 [nonnull-] unsigned-C-StrNG[™].......coiiiiiiiiiie ettt 177
T o w11 T §) A USSR 177
30.25 C-SINEZ-TISEE ettt h e bt bt e bt e bt e bt e bt e bt e bt e bt e b ebean 177
30,20 VOIA. .. utieeiie ettt eeiee et et e et e et e e tveestbeeesbeeesbeeesseeessba e sbeeasseaassaeassaeansaeessaeesbeesbeeassaeanraeanreann 177
30.27 (CONSE TYPE)...cciiiiiiieieee ettt e et et estb e e s v e e sbeeesbeessbaeessaeessseesseeassaesnsesanseenn 177
30.28 (ENUM NAME)......coiiiiiiiie ettt ettt ta e e s v e e s sbeessbeessbaeessaeessseesseesssassnsessnseenn 177
30.29 (C-poINter TYPE).. ..ottt ettt e sbe e be e bt be e b e s 177
30.30 (nonnull-c-pointer TYPE).......ooiiiiiiee ettt 177
30.31 (TEF TYPE).eiiiiiieeeee ettt ettt e et e e tb e e s tv e e s sbeeesbeeessaeessaeessseesseasssaesnseesnseenn 177
30.32 (SEIUCE NAME).....oiiiiiiieieceeete ettt e et e et e e ta e e s v e et e e esbeesstaeessaeessseesseesssasansesasseenn 178
30.33 (template TYPE ARGTYPE ...}ttt sttt 178
30.34 (UNION NAME).....coiiiiieee ettt e et e et e e tae e s b e e s sbeeesbeeessaeessseesseesseaassasansessnseenn 178
30.35 (instance CNAME SCHEMECLASS)......ccuii ottt ettt ee e ae s vaesveeenvee s 178
30.36 (instance-ref CNAME SCHEMECLASS).....ccviiiieetteeteeeeeetee ettt sve e v s vee v s 178
30.37 (function RESULTTYPE (ARGUMENTTYPEI ... [...]) [CALLCONV]...ccovevvieerieereeennenn 178
30.38 IMAPPINES. ¢ eeeuteeuteeiieeiie ettt te ettt et e s et e s bt e shtesh e e e bt e ebtesb e e e bt e sb e e she e eheeebe e bt e bt e bt e sbe e bt e bt e bt ebeebean 178

31 Embedding 180
31.1 CHICKEN_parse_command_TNe...........ccoeterieriiiiinieiieni ettt ettt e v naeeneeas 180
31.2 CHICKEN _INTHALIZE.c.veeevieeiieecieeereeeteeeteeeteeeteeetteesiaeesveesssaessseesssaeessseesssessssessssesssesssens 180
31.3 CHICKEN _IUN.....utiiiiiiiiieeiieetieeeteesveesteesveessveeesseeessseessseessseasssasassessssssessssesssesssseesssessssesasseen 180
B B (S 10y 4 B o 410) O RSP 180
31.5 CHICKEN_EVAL....oiiiiiiiiiieiieeiie ettt e s tee et esteeeteeetbeestaeesaveasssaeesseesssaeesssaesseesseesssassssessnseenn 181
31.6 CHICKEN_@VAl_SIIING ... ceiuteiiieeiieeiieeiieei ettt sttt sttt st e st be e bt e bt e sbeesbeesbe e bt e bt enbeeneean 181
31.7 CHICKEN_@Val_tO_StIINGcc.eeeuieeieiiiieiieiitesite sttt sttt et et sbe e bt e bt e sbeesbeesbeesbeenbeebeeneean 181
31.8 CHICKEN_eval_String_t0_StrINZ.....cccuertiiieriieniieniieeiiesttesttestte st e st e steesbeesbeesbeesbeesbeesbeenbeenbeeneeas 181
31.9 CHICKEN _aPPLY... ittt sttt ettt h e s h e sbe e bt e bt e bt e s bt e bt e sbeesbeenbe e bt ebeenbean 181
31.10 CHICKEN _appPly_tO_SLIINEZ...ceiuiieuiieiiieiieitiesite sttt te sttt sit e bt e bt e bt e sbeesbeesbeesbeenbeenbeeeean 181

XViii

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

31 Embedding
31.11 CHICKEN_TEAWceeeeiiieeeeeeeeeee ettt ettt e e e ettt e e e s e eaaae et e e e e s esasaaeeeeeessssaaseeeessannnnaes 182
31.12 CHICKEN_IOAQ.....ceeieiiieieeeeeeeeee ettt eete et e e e e e et et e e e s s esasaaneeeeesssanraseeeeessnnnnnes 182
31.13 CHICKEN_ZEt_CITOT_IMESSAZE....veeevrrerureenureerteeeieeenieteniteenieeensteesseesseeenseessseeesseeensseessseesnseens 182
31.14 CHICKEN_YICIA....ceiuiiiiiiiieiieeeee ettt sttt st et be e b e bt e bt e sbeesbe e bt e beenbeeneean 182
31.15 CHICKEN CONIMUE. eeeeeeeeeeeee e e e e e e e e et e e e e e e e e e e e eee e aeeeeee e e e e e aeeeeeeeeeananaaans 183
31.16 CHICKEN _NEW_ZC_TOOL...ccutiiuiieiieeiieeitenttesite st e ettesttesttesttesteesbeesbeesbeesbeesbeesbeesbeesbeenbeenbeanseensean 184
31.17 CHICKEN _ElEte_SC_TOO0L..c..utieiiieiiieniiienieeeiee ettt ettt ettt e st e sttt e sbeesabeeebeeesbeeenbeeesaseesabeesabeens 184
31.18 CHICKEN_ZC_TOOt_T€Teiiiiiiiiiiieiiee ettt ettt ettt e sbe e b e b b e b eeeas 184
31.19 CHICKEN _ZC_TOOT_SEL.ccuttietieeieeeniieeriiienteenteeeteeenbetentteesiteessteesabeesabeeebeeenbeeenseeessseesseesseens 185
31.20 CHICKEN_gIobal_lOOKUP.couiiiiiiiiiiieiitenie ettt ettt sbe e nbe e s 185
31.21 CHICKEN_GIODAL_TEf......c..coiiiiiiiie ettt st b et nbe e es 185
31.22 CHICKEN_GIODAL_SEL.....cueiiuiiiiiieiieeiieete ettt ettt et e bt e bt e bt e bt e s bt e bt e nbeenbeeeeas 185
32 Callbacks 186
32.1 defINE-EXLEINAL......cooiiiieiiiieieeeeeeee et e ettt e e e e et e e e e e e eaaaeeeeeeesssnaaarreeeesasrrareeeeesennnnnes 186
322 € CAIIDACK . .o e e e e e e e ————— 186
32.3 C_callback_adjust_StACK.......cccueiiiiiiiiiiieite ettt sttt 187
33 Locations 188
33,1 AefINE-TOCAtION.cciiiieiieiiie ettt e e e et e e e e e e eaaae et e eesseenaaaereeeessnsrareeeeesennnnaes 188
I T 1< Lo Yo7 1 Lo § WSRO 188
IR IRC I U0 Te:1 5 (o) « OSSP 188
34 Other support procedures 190
B4 T ATZCAATZV oottt et e a e a e n et ene e en 190
35 C interface 191
351 €AV ettt ettt e et e et et et et e et et et aa et et aa—a—a—a—trat—————aaaaaannnan_—————————————otatatatatana 191
R I O (=31 (o) (=S ROTRRORORPRPRPRPPPRPPPPPRRE 191
ST I O . RSO RRRRRRRRRRE 191
35.4 € _INAKE CRATACTEL.eueeeeieeeiiieieeeeeee ettt ettt ettt et e et e e s e s e s esess s asasssssssssssssssssssasasssanes 191
35.5 C_SCHEME_END _OF LIST.....oooiiiiiiieiiee ettt eeeae e e e e et e e e e s esnaaneeeesssnnnnnes 191
35.6 C_word C_SCHEME_END_OF _FILE.........coooooiiiiiiiiieiie et eeaee e e s s 191
35.7 C_wWOrd C_SCHEME _FALSE.......oooo ettt e e e e eaaae e e e e e eennnaes 191
35.8 C_wWOrd C_SCHEME _TRUE..........cooimiiiiiiieeeeeeeeee ettt e e s et e e e e e s enaaaes 191
R G 14 11 U= 2SSOSR 192
N L G 41T PSSR 192
3511 CNEEINZ ettt ettt et e e eeeeeeeeeeeeeeeeeeeeeeesaseesesesesssesasasssssssnssssssssssssssssssssssasasssanes 192
RIS B G 11115 & 1 1 TR ORORPRPPPRPPPRPPPPPRRt 192
I I G o | S S SUPUSURR 192
35,14 € lOMUITL .ttt ettt e e et et e eeeeeeeeeeeeeeeeeeeeeesesesesssesssasssssssnssssssssssssssssssssssasssssanes 192
35,15 C Nt L0 TIUITL.ututitniieieaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseseseeessesesssssssesassssssssssnsssssssssssssssssssasssssanes 192
I KO G 115103 11 11 ST USRS 192
R WA G =Te) (o) RO ORRRORPRPRPPPRPPPPPRIRt 192
ST B T O T RS PRRRERRRRE 192
T L O 1 (TSRS 193
35.20 C_SIZEOF _LIST ... ettt e ettt e e s e et e e e e s esaaaaaeeeesssssraeeeeeesennnnaes 193
35.21 C_SIZEOF _STRING.......cccitiitiiiieee ettt ettt e e e e e et e e e e s esasaaseeeeesssstaaeeeessssnnnnes 193
35.22 C_SIZEOF_VECTOR.......coo ittt e et e e e e e e e e s s senaaaeeeesssennnaes 193
35.23 C_SIZEOF_INTERNED _SYMBOL.......ooooiiiiiiiiiie et eeaave e e e 193
35.24 C_SIZEOF _PAIR.......ooeeeiieeeeeeeeee ettt ettt e e e et e e e e s eeaaae e e e e s s ssstaseeeesssnnnnnes 193

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

35 C interface

35.25 C_SIZEOF _FLONUM.....ccoiittitiiininiteteniinitetesteste ettt ettt sie et bt s st esse st saesssesesaesneemnens 193
35.26 C_SIZEOF _POINTER........cotttititietetettetet ettt sttt sttt ettt ettt sre b emnens 193
35.27 C_SIZEOF _LOCATIVE. ...ttt sttt sttt sttt st 194
35.28 C_SIZEOF_TAGGED _POINTER.......ccccceetitiriimirieeneneeieteee ettt ettt s sveeaens 194
35.29 € _CRATACEET _COUE....uuuuueeieieiiieieeieeeeeeeee ettt e e e e e e e e e e e e e e e e et e e e e e e e st e e e eseesss s asssasessssssassssssasasasanes 194
35,30 € UNT IR ettt ettt et e e e e e e e e e e eeeeeete e et et eteeeetaaaaaaaraaaaaaaaaaaannan_—_———————————ataratatatatanes 194
35.31 C_flonum_magnitide..........coueiiiiiiiiiiieiite ettt ettt et sb e b et b e bt e bt e bt e b e b eean 194
I G o 7 5 1 1SS 194
35.33 C_IMUITL O _IMEuuuutiiiiiiiiiieiieeeeeeeeeeeee ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeesesesesssesassasssssssnsssssssssssssssssssssasssssanes 194
35.34 C_pOINter_adAIESS. ..cueeiuieruieriieeiieeiieeit ettt ettt et e st esb e s bt e sbeesbeesbe e bt e bt e s bt e sbeesbe e bt e bt ebeebean 194
R IR R O 1 17: 16 1S G /=S TR ORRRORPRPRPPPRPPPPPRRt 194
R IR LY O 1 17 16 1S Gl o3 1 S-SR ORRRRRPRPPPPPRPPPPPRIRt 195
35,37 € DIOCK ILEIML . ittt e e e e e e e e e e e e e e et e e e e e e e et eeesesesesesesess s ssnssasssssesssssssssssssnsasasanes 195
R L O S T T o3) RO ORORORPRPPPPPRPPPPPRIRt 195
R L G s T T o | SRR ORORRRPPPPPPPRPPPPPRRt 195
R L G e 1 - 1011111 S ST 195
3541 € MNAKE NEAET.....ueeeeeeeiieeeeeeeeeeeeeeeeeeee ettt e e e e et ettt e e e e e e aassaaaaasasasaaaasseanes 195
3542 € ITULALE. ...ttt e ettt et eeeeeeeeeeeeeeeeeeeeeeeeseeeeeesesesesasssasaas s nnnsnassssnsssnanaasrsaseasasaaanes 195
35.43 C_SYMDBOI_VAIUE......oouiiiiiiiiiiie ettt b et be e st e bt e bbb e s 196
R G (o o] 0] (<1 A USSP 196
R S G (o b1 110] 0] (<1 A USSP 196
35.46 C_Pre_gC NOOKcoiiiiieiie ettt sttt et b e bt e bt et be e bt e bt e bt e beebean 196
35.47 C_POSt_C_NOOK. ... ittt sttt b e bbbt e b e b e nbe b an 196
35.48 An example for simple calls to foreign code involving callbacks............ceceeveerenervencncneenas 197
35149 NS . ettt ettt ettt ettt et a et e s h e e s bt e s bt e s bt e s bt e e bt e sb e e bt e e bt e eh e e eh e e ehe e bt e bt e bt e bt e ebe e bt e bt e beebeenbean 197
36 chicken-setup. 199
36.1 EXtENSION IIDTATIES.cueiiiiiiiiiiiieeiieeee ettt sttt sb e bt e bt e sbe e be e b e be e b ebeas 199
36.2 INStalling EXLENSIONS. c..c.veeuretirtiritetenteettetente ettt ert et st etestesbeeate b s bt ebeesse bt ebeessenaesbesmnensesaesueemnens 199
36.3 CreatiNng EXIENSIONS . c..eeuteurerterteetetenteettetente et et este s bt sttetestesbeeatentesbeebeessenbeebeessensesuesneensessesbeemsens 199
36.4 Procedures and macros available in SEtUP SCIIPLS......covevveriererieriineeeeienieeeetente e eieeneens 199
36.4.1 INSLAll-EXEEINSION. ..c..eiriiiiiieiiieiie ettt e sb e sbt e sht e s bt e s bt e s bt e sbeesbeesbeenbeenbeenbeenbean 200
36.4.2 INSLAll-PIOZIAIML....c..eiiiiiiiiieiie ettt ettt ettt e b e sbe e sbt e shtesbe e bt e bt e s beesbeesbeenbe e beebeenbean 201
36.4.3 INSLALL-SCIIPL . c..eieteeiieeete ettt b e sb e s bt e sh e e s bt e s bt e bt e s beesbeesbe e bt e bt ebeenbean 201
30,44 TUD .ttt h e e h e e bt e s h e bt e s bt e sbe e ehe e e bt e eb e e bt e bt e bt e nbe e bt e bt e bt ebeebean 202
30.4.5 COMPILE.....ceiiiiee ettt s b e sh e h e e bt e s bt e s bt e s bt e sbe e bt e be e beebeebean 202
30.4.6 TNAKE.....cueeiiiiiii et h e bbbt e bt e bt e bt e bt e bt e be e bt e beebean 202
B0.4.7 PALCH ...ttt ettt b e bt e bt e bt e bt e beebean 202
30.4.8 COPY-TILE.. ittt sttt b e bt bt e s bt e b e bt b e bt ebean 202
360.4.9 MOVETILE.... ittt ettt b e bt e bbbt e b e bean 202
36.4.10 1@MOVE-TILE ..ottt ettt e bt e b e b e bt beebeas 202
360.4. 11 fINA-TIDTATY ..ottt sttt b e bt e bt e s bt e s bt e b e sbe e bt ebeebeas 203
360.4. 12 fINA-NEAAEE ..ottt ettt et e b e bbb bean 203
30.4. 13 tY-COMPILE....couiiiiiiiieite ettt st sh e h e bt e bt e b e e bt e s bt e beesbeenbeebeenbean 203
30.4. 14 CTRALE-AITECIOTY M. uteuteeiteeiie ettt ettt ettt e e e sb e e sbeesbtesbeesbe e s bt e bt e sbeesbeesbeenbeebeenbeenbean 203
36.4.15 ChICKEN-PIETIX....ccueiiiiiiiiiie ettt ettt ettt e st e b e b e b e nbeebeas 203
36.4.16 INStAllatioN-PrefiX.......cootiiiiiiiiiee ettt sttt et b e be b as 203
36.4.17 Program-Pathi.......cccociiiiiiiiiieee ettt sttt e sh e a e bt e bt e bt e s bt e beenbe e beebeebean 203
36.4.18 SELUP-TOOt-AITECLOTY. ..c..teuieeiiietieritestte et te et e et e ettt e st e sbeesbtesbeesbe e s bt e bt e sbeesbeesbeesbeebeenbeenbean 204
36.4.19 Setup-bDUIld-ITECIOTY......coctiriiriiriiienienieetete ettt ettt sttt 204
36.4.20 SetuP-VEIrDOSE-Tlag......coiiiiiiiiiiie et 204

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

36 chicken-setup
36.4.21 Setup-InStAll-flag.......coviiiiiiiiiee ettt 204
36.4.22 required-ChiCKeN-VEISION.ccuiiiiiiieitie ittt ettt sttt ettt ettt sbe e b e b e b ebeebeas 204
36.4.23 required-EXteNSION-VEISIOML....c.eeitirtiertieriieetieetiesttesttesteesttesttesueesbeesbeesbeesbeesbeesbeenseeseensean 204
36.4.24 CTOSS-CRICKEIL. ...cueiiiiiiieicieree ettt ettt 204
36.4.25 NOSt-EXIENISION. ..c..eeuviniiriienteierieetete sttt ettt et st et et st sue et e besbeebeemse bt sbeeneensesbeeaeennes 205
36.5 EXaMPIEs fOr @XEENSIONS. ...c..eeruiiiiiieiieiiiieitert ettt ettt et te st e sbeesaeesbe e bt e sbeesbeesbeesbeesbeenbeebeenbean 205
36.6 ChiCKen-SEtUP TEIETEINCE.coiuiiiiiieiieiiete ettt et e bt e b e eeas 207
36.7 WINAOWS NOLES.....eeuvitireieuretentieitetente et ettt sttt et st satetestesbeeat e besbeebeest e bt ebeensensesbesneensesaesbeennens 209
308 SECUITLY....eeueetiiieitetentieitet ettt ettt ettt ettt b et et s b e sbt et e st e s bt e st et e s bt ebe et et e e bt essenbesbessnensenbesbeemnens 209
36.9 Other modes Of INSTAllAtION.......ccueouiririiriiriieetceeete ettt sbeemaens 209
36.10 Linking exXtensions StatiCallY...........cecuiiiiiiiiiiniiiieee ettt 210
37 Data representation 211
37.1 IMMEIALE ODJECES. . .eeeueeeieriieitieeite ettt ettt et e bt e sb e e s bt e s bt e sbeesbee bt e bt enbeesbeesbeenbeenbeabeeneean 211
37.2 NON-TMMEAIALE ODJECES. . .ceuteruiiriieeiieeiieeite et rite ettt et te st e sbtesbe e s bt e sbe e bt e sbeesbeesbeesbeesbeenbeenbeeneean 211
38 Bugs and limitations 213
39 FAQ 214
391 GENEIAL.....ooiiiii e en 214
39.1.1 Why yet another Scheme implementation?..........c.ccoceeceevererernienenenieeneneeeeeeeneeeenes 214
39.1.2 Why call it "ChiCKen'Z......cccuiiiiiiiiiiineceeeee ettt ettt 214
39.1.3 What should I do if I find a bug?......cc.coceeviiniiniiiiiiniiecceeeecce e 214
39.1.4 Why are values defined with define-foreign-variable or define-constant or
define-inline not seen outside of the containing source file?.............ccoocerviiiiniinienienne 214
39.1.5 How does cond-expand know which features are registered in used units?...................... 215
39.1.6 Why are constants defined by define-constant not honoured in case constructs?............. 215
39.1.7 How can I enable case sensitive reading/writing in user code?.........cc.cceevereecvenenennenne. 215
39.1.8 How can I change match-error-control during compilation?............cecceevevereereenenennenne. 215
39.1.9 Why doesn't CHICKEN support the full numeric tower by default?...........cccccceenennnne. 215
39.1.10 How can I specialize a generic function method to match instances of every class?......216
39.1.11 Does CHICKEN support native threads?..........ccoceverievenininnenenenecieneneeeeneeneeeennes 216
39.1.12 Does CHICKEN support Unicode Strngs?........ccceveeeerierenerneeneneneenreneneeeeneenseeeennes 216
39.1.13 Why do I get an "Error: invalid syntax: ..." using 'match’ and 'syntax-case'?.................. 216
39.2 Platform SPECITIC. ...c.vevuirueetertiriieiteiese ettt ettt sttt st ettt et et ae e sreebeennen 217
39.2.1 How do I generate a DLL under MS Windows (tm) 2......c..cccceeevenerveeneneneeseeneneneenne 217
39.2.2 How do I generate a GUI application under Windows(tm)?..........cccceceevveneneereenenennenne. 217
39.2.3 Compiling very large files under Windows with the Microsoft C compiler fails with a
message indicating insufficient heap SPace...........cocceeviiiieiiiiieiiieeeee e 217
39.2.4 When I run csi inside an emacs buffer under Windows, nothing happens....................... 217
39.2.5 I load compiled code dynamically in a Windows GUI application and it crashes............ 217
39.2.6 On Windows, csc.exe seems to be doing something WIong...........cecceceeevenereevenienennenne. 217
39.2.7 On Windows source and/or output filenames with embedded whitespace are not
FOUNG....cntitietee ettt ettt et et sb e e bt et bt bt e et bt eaeennes 217
39.3 CUSLOIMUZALION. 1..c.veeutentieeeatete ettt eat ettt et et e bt sat et e stesbeeatenb e s bt ebeessenbeebeessesesbeesnentenaesbeemnens 218
39.3.1 How do I run custom startup code before the runtime-system is invoked?..................... 218
39.3.2 How can I add compiled USET PASSESP.....cc.couiruerieriiriirienienienieeteiesieeieenrenresreeneensesseeneennes 218
39.4 COMPILEA MACTOS......cviuieuietirtieiieteseeieetete ettt sttt et et sb et s bt bt ettt e bt essentesbeesnessesaesbeemnens 218
39.4.1 Why is define-macro complaining about unbound variables?...........cccccccevereeveninennnnne. 219
39.4.2 Why isn't load properly loading my library of macros?..........ccccceeverveeninineereenenennenne. 219
39.4.3 Why is include unable to load my hygienic macros?........c..cocceeueverereenienenieereenenennenne 219

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

39 FAQ
39.4.4 Why are macros not visible outside of the compilation unit in which they are
EfINEA Y. ..ttt ettt et et sttt e 219
39.5 Warnings and EITOTS.........ccuerteruertertenereetententeetestesteettetestesteestesesseeseessenseeseessensessesssensessessesnsens 219
39.5.1 Why does my program crash when I use callback functions (from Scheme to C and
back to SChemMe aaAIN)7.......ccceriiririiiieneetetere ettt sttt ettt sbe e a bt ennes 219
39.5.2 Why does the linker complain about a missing function _C_..._toplevel?...................... 219
39.5.3 Why does the linker complain about a missing function _C_toplevel?..........ccccccoeeueeee. 220
39.5.4 Why does my program crash when I compile a file with -unsafe or unsafe
ECIATALIONS ...ttt ettt ettt et sb ettt b et et b e bt et e saesbe et enbesbesbeeneens 220
39.5.5 Why do I get a warning when I define a global variable named match?............c..c.cc....... 220
39.5.6 Why don't toplevel-continuations captured in interpreted code work?..........cccccevevveeunenee. 220
39.5.7 Why does define-reader-ctor not work in my compiled program?...........cccceceecverenernenne. 221
39.5.8 Why do built-in units, such as srfi-1, srfi-18, and posix fail to load?.........c.ccccceereeneenen. 221
39.5.9 How can I increase the size of the trace shown when runtime errors are detected?.......... 221
39.60 OPLIMIZAIONScveeuteiieeeetenterteeiteteste et ettt et et este s bt sttetestesbeeaeentesbeebeessebeebeessensessesssensessesseensens 221
39.6.1 How can I obtain smaller eXecutables?.........ccccecueriririeniinininieieneeecrceee e 222
39.6.2 How can I obtain faster eXecutables?.........cocvvveierinirieniininieieieneeeceeee e 222
39.6.3 Which non-standard procedures are treated specially when the extended-bindings or
usual-integrations declaration or compiler option is Used?..........ccoceeviervieniirieniienienieeee 222
39.6.4 Can I load compiled code at TUNIME?Z.....c..ccereeeeriririeienieneetete et eeeennes 223
39.7 Garbage COLECHION.coueeiiiiiieiteieteeie ettt ettt sttt et ebe ettt st e st sae et saesbeemnens 223
39.7.1 Why does a loop that doesn't cons still trigger garbage collections?...........cccceceervereernnenee. 223
39.7.2 Why do finalizers not seem to work in simple cases in the interpeter?............ccoceveeueeee. 223
B3O8 INEEIPIELEL. ..ottt ettt ettt et et e st e st e s bt e st e bt e bt e ae e b e sae e be e st e aeeneenneen 224
39.8.1 Does CSI support history and autocompletion?............ccccevereeveeneneneeneneneeeeneneeeenne 224
39.8.2 Does code loaded with load run compiled or interpreted?..........ccccoceeveevineneeceenenennenne. 224
39.9 EXLEISIONS c.cuvenvteuteutetiettetentesteeitete st st ettt st e et e st e sbt et e sbesbeestemb e s bt ebeest e bt ebeenbetesbeestentenbesbeennens 224
39.9.1 How can I install Chicken eggs to a non-default location?...........cocceceeveneneereenenennenne. 224
39.9.2 Can I install chicken eggs as @ NON-TOOt USEI?......c..coereerierierirrienienieneetenreeeeeeneenseeeeennes 225
40 Acknowledgements 226
41 Bibliography. 228

XXii

1 The User's Manual

This is the user's manual for the Chicken Scheme compiler, version 3.1.0

Overview

What is Chicken?
Basic mode of operation

Compiling Scheme files.
Using the compiler

Explains how to use CHICKEN to compile programs and execute them.
Using the interpreter

Invocation and usage of csi, the CHICKEN interpreter
Supported language

The language implemented by CHICKEN (deviations from the standard and extensions).
Interface to external functions and variables

Accessing C and C++ code and data.
chicken-setup

Packaging and installing extension libraries.
Data representation

How Scheme data is internally represented.
Bugs and limitations

Yes, there are some.
FAQ

A list of Frequently Asked Questions about CHICKEN (and their answers!).
Acknowledgements

A list of some of the people that have contributed to make CHICKEN what it is.
Bibliography

Links to documents that may be of interest.

1 The User's Manual

2 Overview

CHICKEN is a compiler that translates Scheme source files into C, which in turn can be fed to a
C-compiler to generate a standalone executable. An interpreter is also available and can be used as a scripting
environment or for testing programs before compilation.

This package is distributed under the BSD license and as such is free to use and modify.

The method of compilation and the design of the runtime-system follow closely Henry Baker's CONS Should
Not CONS Its Arguments, Part II: Cheney on the M. T.A. paper and expose a number of interesting properties:

¢ Consing (creation of data on the heap) is relatively inexpensive, because a generational garbage
collection scheme is used, in which short-lived data structures are reclaimed extremely quickly.

® Moreover, call-with-current-continuation is practically for free and CHICKEN does
not suffer under any performance penalties if first-class continuations are used in complex ways.

The generated C code is fully tail-recursive.

2.1 Features
Some of the features supported by CHICKEN:

* SRFIs 0, 1, 2, 4, 6, 8-19, 23, 25-31, 37-40, 42, 43, 45, 47, 55, 57, 60-63, 66, 69, 72, 78, 85 and 95.
¢ Lightweight threads based on first-class continuations

e Pattern matching with Andrew Wright's mat ch package

® Record structures

¢ Extended comment- and string-literal syntaxes

e Libraries for regular expressions, string handling

e UNIX system calls and extended data structures

e Create interpreted or compiled shell scripts written in Scheme for UNIX or Windows
¢ Compiled C files can be easily distributed

e Allows the creation of fully self-contained statically linked executables

® On systems that support it, compiled code can be loaded dynamically

This manual is merely a reference for the CHICKEN system and assumes a working knowledge of Scheme.

Back to index.html

2 Overview 2

http://home.pipeline.com/~hbaker1/CheneyMTA.html
http://home.pipeline.com/~hbaker1/CheneyMTA.html

3 Basic mode of operation

The compiler translates Scheme source code into fairly portable C that can be compiled and linked with most
available C compilers. CHICKEN supports the generation of executables and libraries, linked either statically
or dynamically. Compiled Scheme code can be loaded dynamically, or can be embedded in applications
written in other languages. Separate compilation of modules is fully supported.

The most portable way of creating separately linkable entities is supported by so-called unirs. A unit is a
single compiled object module that contains a number of toplevel expressions that are executed either when
the unit is the main unit or if the unit is used. To use a unit, the unit has to be declareed as used, like this:

(declare (uses UNITNAME))

The toplevel expressions of used units are executed in the order in which the units appear in the uses
declaration. Units may be used multiple times and uses declarations may be circular (the unit is initialized at
most once). To compile a file as a unit, add a unit declaration:

(declare (unit UNITNAME))

When compiling different object modules, make sure to have one main unit. This unit is called initially and
initializes all used units before executing its toplevel expressions. The main-unit has no unit declaration.

Another method of using definitions in separate source files is to include them. This simply inserts the code in
a given file into the current file:

(include)

Macro definitions are only available when processed by include or require-for-syntax. Macro
definitions in separate units are not available, since they are defined at compile time, i.e the time when that
other unit was compiled (macros can optionally be available at runtime, see de fine-macro in Substitution
forms and macros).

On platforms that support dynamic loading of compiled code (Windows, most ELF based systems like Linux
or BSD, MacOS X, and others) code can be compiled into a shared object .d11, .so, .dylib) and loaded

dynamically into a running application.

Previous: index.html Next: Using the compiler

3 Basic mode of operation 3

http://galinha.ucpel.tche.br/Non-standard macros and special forms
http://galinha.ucpel.tche.br/Non-standard macros and special forms

4 Using the compiler

The interface to chicken is intentionally simple. System dependent makefiles, shell-scripts or batch-files
should perform any necessary steps before and after invocation of chicken. A program named csc
provides a much simpler interface to the Scheme- and C-compilers and linker. Enter

csc —help

on the command line for more information.

4.1 Compiler command line format

chicken FILENAME {OPTION}

FILENAME is the complete pathname of the source file that is to be translated into C. A filename argument of
- specifies that the source text should be read from standard input. Note that the filename has to be the first
argument to chicken.

Possible options are:

-analyze-only
Stop compilation after first analysis pass.

-benchmark-mode
Equivalent to -no-trace -no-lambda-info -optimize-level 3
—fixnum-arithmetic —-disable-interrupts -block -lambda-lift.

-block
Enable block-compilation. When this option is specified, the compiler assumes that global variables
are not modified outside this compilation-unit. Specifically, toplevel bindings are not seen by eval
and unused toplevel bindings are removed.

-case-insensitive
Enables the reader to read symbols case insensitive. The default is to read case sensitive (in violation
of R5RS). This option registers the case—insensitive feature identifier.

-check-imports
Search for references to undefined global variables. For each library unit accessed via (declare
(uses ...)),the compiler will search a file named UNITNAME . exports in the current include
path and load its contents into the import-table (if found). Also, export-information for extensions
(accessed through (require-extension ...)) will be searched and stored in the import-table.
If a required extension does not provide explicit export-information a . exports file is searched (as
with used units). After the analysis phase of the compiler, referenced toplevel variables for which no
assignment was found will generate a warning. Also, re-assignments of imported variables will trigger
a warning.

-check-syntax
Aborts compilation process after macro-expansion and syntax checks.

-debug MODES
Enables one or more compiler debugging modes. MODES is a string of characters that select
debugging information about the compiler that will be printed to standard output.

show time needed for compilation

show breakdown of time needed for each compiler pass
show performed optimizations

show invocation parameters

show program-size information and other statistics
show node-matching during simplification

show execution of compiler sub-passes

T ®» w8 O O

4 Using the compiler 4

CHICKEN User's Manual - The User's Manual

show lambda-lifting information

show GC statistics during compilation

print the line-number database

print every expression before macro-expansion
lists all unassigned global variable references
display information about experimental features
when printing nodes, use node-tree output

show the real-name mapping table

show expressions after the secondary user pass
show database before lambda-lifting pass

show expressions after lambda-lifting

show unit-information and syntax-/runtime-requirements
show source expressions

show canonicalized expressions

show expressions converted into CPS

show database after each analysis pass

show expressions after each optimization pass
show expressions after each inlining pass

show expressions after complete optimization
show database after final analysis

show expressions after closure conversion

WO Jo U WNRPREHOOZUXc QB3 3

-debug-level LEVEL
Selects amount of debug-information. LEVEL should be an integer.

—debug-level 0 is equivalent to -no-trace -no-lambda-info
—-debug-level 1 is equivalent to -no-trace
—debug-level 2 does nothing (the default)

-disable-interrupts
Equivalent to the (disable-interrupts) declaration. No interrupt-checks are generated for
compiled programs.
-disable-compiler-macros
disable expansion of compiler macros.
-disable-stack-overflow-checks
Disables detection of stack overflows. This is equivalent to running the compiled executable with the
- : o runtime option.
-disable-warning CLASS : Disables specific class of warnings, may be given multiple times. The following
classes are defined

usage warnings related to command-line arguments
type warnings related to type-conversion
ext warnings related to extension libraries
var warnings related to variable- and syntax-definitions and use
const warnings related to constant-definitions
syntax syntax-related warnings
redef warnings about redefinitions of standard- or extended-bindings
call warnings related to known procedure calls
ffi warnings related to the foreign function interface
-dynamic

This option should be used when compiling files intended to be loaded dynamically into a running
Scheme program.

-epilogue FILENAME
Includes the file named FILENAME at the end of the compiled source file. The include-path is not
searched. This option may be given multiple times.

-emit-exports FILENAME
Write exported toplevel variables to FILENAME.

-emit-external-prototypes-first
Emit prototypes for callbacks defined with define-external before any other foreign
declarations. This is sometimes useful, when C/C++ code embedded into the a Scheme program has

4.1 Compiler command line format

CHICKEN User's Manual - The User's Manual

to access the callbacks. By default the prototypes are emitted after foreign declarations.

-explicit-use
Disables automatic use of the units 1ibrary, eval and extras. Use this option if compiling a
library unit instead of an application unit.

-extend FILENAME
Loads a Scheme source file or compiled Scheme program (on systems that support it) before
compilation commences. This feature can be used to extend the compiler. This option may be given
multiple times. The file is also searched in the current include path and in the extension-repository.

-extension
Mostly equivalent to ~-prelude ' (define—extension <NAME>) ', where <NAME> is the
basename of the currently compiled file. Note that if you want to compile a file as a normal
(dynamically loadable) extension library, you should also pass the —~shared option.

-feature SYMBOL
Registers SYMBOL to be a valid feature identifier for cond—expand. Multiple symbols may be
given, if comma-separated.

-fixnum-arithmetic
Equivalentto (fixnum-arithmetic) declaration. Assume all mathematical operations use small
integer arguments.

-heap-size NUMBER
Sets a fixed heap size of the generated executable to NUMBER bytes. The parameter may be followed
by a M (m) or K (k) suffix which stand for mega- and kilobytes, respectively. The default heap size is 5
kilobytes. Note that only half of it is in use at every given time.

-heap-initial-size NUMBER
Sets the size that the heap of the compiled application should have at startup time.

-heap-growth PERCENTAGE
Sets the heap-growth rate for the compiled program at compile time (see: —: hg).

-heap-shrinkage PERCENTAGE
Sets the heap-shrinkage rate for the compiled program at compile time (see: —: hs).

-help
Print a summary of available options and the format of the command line parameters and exit the
compiler.

-import FILENAME

Read exports from linked or loaded libraries from given file. See also ~check—-imports. This is
equivalent to declaring (declare (import FILENAME)).Implies —~check-imports.
-include-path PATHNAME
Specifies an additional search path for files included via the include special form. This option may
be given multiple times. If the environment variable CHICKEN_INCLUDE_PATH is set, it should
contain a list of alternative include pathnames separated by ; .
-inline
Enable procedure inlining for known procedures of a size below the threshold (which can be set
through the —inline-1imit option).
-inline-limit THRESHOLD
Sets the maximum size of a potentially inlinable procedure. The default threshold is 10.
-keyword-style STYLE
Enables alternative keyword syntax, where STYLE may be either prefix (as in Common Lisp),
suffix (asin DSSSL) or none. Any other value is ignored. The default is suffix.
-keep-shadowed-macros
Do not remove macro definitions with the same name as assigned toplevel variables (the default is to
remove the macro definition).
-lambda-lift
Enable the optimization known as lambda-lifting.
-no-lambda-info
Don't emit additional information for each 1ambda expression (currently the argument-list, after
alpha-conversion/renaming).

4.1 Compiler command line format 6

CHICKEN User's Manual - The User's Manual

-no-trace
Disable generation of tracing information. If a compiled executable should halt due to a runtime error,
then a list of the name and the line-number (if available) of the last procedure calls is printed, unless
-no-trace is specified. With this option the generated code is slightly faster.
-no-warnings
Disable generation of compiler warnings.
-nursery NUMBER
-stack-size NUMBER
Sets the size of the first heap-generation of the generated executable to NUMBER bytes. The parameter
may be followed by a M (m) or K (k) suffix. The default stack-size depends on the target platform.
-optimize-leaf-routines
Enable leaf routine optimization.
-optimize-level LEVEL
Enables certain sets of optimization options. LEVEL should be an integer.

—-optimize-level
—-optimize-level
—-optimize-level
—-optimize-level

does nothing.

is equivalent to -optimize-leaf-routines

is currently the same as -optimize-level 1

is equivalent to -optimize-leaf-routines -unsafe

w N = O

-output-file FILENAME
Specifies the pathname of the generated C file. Default is FILENAME. c.

-postlude EXPRESSIONS
Add EXPRESSIONS after all other toplevel expressions in the compiled file. This option may be
given multiple times. Processing of this option takes place after processing of ~epilogue.

-prelude EXPRESSIONS
Add EXPRESSIONS before all other toplevel expressions in the compiled file. This option may be
given multiple times. Processing of this option takes place before processing of ~-prologue.

-profile

-accumulate-profile
Instruments the source code to count procedure calls and execution times. After the program
terminates (either via an explicit exit or implicitly), profiling statistics are written to a file named
PROFILE. Each line of the generated file contains a list with the procedure name, the number of calls
and the time spent executing it. Use the chicken-profile program to display the profiling
information in a more user-friendly form. Enter chicken-profile with no arguments at the
command line to get a list of available options. The —accumulate-profile option is similar to
-profile, but the resulting profile information will be appended to any existing PROFILE file.
chicken-profile will merge and sum up the accumulated timing information, if several entries
for the same procedure calls exist.

-profile-name FILENAME
Specifies name of the generated profile information (which defaults to PROFILE. Implies
-profile.

-prologue FILENAME
Includes the file named FILENAME at the start of the compiled source file. The include-path is not
searched. This option may be given multiple times.

-quiet
Disables output of compile information.

-raw
Disables the generation of any implicit code that uses the Scheme libraries (that is all runtime system
files besides runtime.c and chicken.h).

-require-extension NAME
Loads the extension NAME before the compilation process commences. This is identical to adding
(require—extension NAME) atthe start of the compiled program. If ~uses NAME is also
given on the command line, then any occurrences of ~require-extension NAME are replaced
with (declare (uses NAME)). Multiple names may be given and should be separated by , .

4.1 Compiler command line format 7

CHICKEN User's Manual - The User's Manual

-run-time-macros
Makes macros also available at run-time. By default macros are not available at run-time.
-to-stdout
Write compiled code to standard output instead of creating a . c file.
-unit NAME
Compile this file as a library unit. Equivalentto ~-prelude " (declare (unit NAME))"
-unsafe
Disable runtime safety checks.
-unsafe-libraries
Marks the generated file for being linked with the unsafe runtime system. This should be used when
generating shared object files that are to be loaded dynamically. If the marker is present, any attempt
to load code compiled with this option will signal an error.
-uses NAME
Use definitions from the library unit NAME. This is equivalent to —prelude " (declare (uses
NAME)) ". Multiple arguments may be given, separated by , .
-no-usual-integrations
Specifies that standard procedures and certain internal procedures may be redefined, and can not be
inlined. This is equivalent to declaring (not usual-integrations).
-version
Prints the version and some copyright information and exit the compiler.
-verbose
Prints progress information to standard output during compilation.

The environment variable CHICKEN_OPTIONS can be set to a string with default command-line options for
the compiler.

4.2 Runtime options

After successful compilation a C source file is generated and can be compiled with a C compiler. Executables
generated with CHICKEN (and the compiler itself) accept a small set of runtime options:

Shows a list of the available runtime options and exits the program.
—:aNUMBER
Specifies the length of the buffer for recording a trace of the last invoked procedures. Defaults to 16.

—-:b
Enter a read-eval-print-loop when an error is encountered.
—-:B
Sounds a bell (ASCII 7) on every major garbage collection.
—:C
Forces console mode. Currently this is only used in the interpreter (csi) to force output of the #; N>
prompt even if stdin is not a terminal (for example if running in an emacs buffer under Windows).
-:d
Prints some debug-information at runtime.
—-:D

Prints some more debug-information at runtime.
—: fNUMBER
Specifies the maximal number of currently pending finalizers before finalization is forced.
- :hNUMBER
Specifies fixed heap size
- :hgPERCENTAGE
Sets the growth rate of the heap in percent. If the heap is exhausted, then it will grow by
PERCENTAGE. The default is 200.

4.2 Runtime options 8

CHICKEN User's Manual - The User's Manual

:hiNUMBER

Specifies the initial heap size

: hmNUMBER

Specifies a maximal heap size. The default is (2GB - 15).

:hsPERCENTAGE

Sets the shrink rate of the heap in percent. If no more than a quarter of PERCENTAGE of the heap is
used, then it will shrink to PERCENTAGE. The default is 50. Note: If you want to make sure that the
heap never shrinks, specify a value of 0. (this can be useful in situations where an optimal heap-size is
known in advance).

Disables detection of stack overflows at run-time.

Writes trace output to stderr. This option has no effect with in files compiled with the —-no-trace
options.

: sSNUMBER

Specifies stack size.

: tNUMBER

Specifies symbol table size.

Enables garbage collection of unused symbols. By default unused and unbound symbols are not
garbage collected.

Raises uncaught exceptions of separately spawned threads in primordial thread. By default uncaught
exceptions in separate threads are not handled, unless the primordial one explicitly joins them. When
warnings are enabled (the default) and - : x is not given, a warning will be shown, though.

The argument values may be given in bytes, in kilobytes (suffixed with K or k), in megabytes (suffixed with M
or m), or in gigabytes (suffixed with G or g). Runtime options may be combined, like - : dc, but everything
following a NUMBER argument is ignored. So —: wh64m is OK, but —: h64mw will not enable GC of unused
symbols.

4.3 Examples

4.3.1 A simple example (with one source file)

To compile a Scheme program (assuming a UNIX-like environment) consisting of a single source file,
perform the following steps.

4.3.1.1 Writing your source file

In this example we will assume your source file is called foo . scm:

rrs

foo.scm

(define (fac n)

(write

(zero? n)
1
(* n (fac (= n 1)))))

(fac 10))

(newline)

4.3 Examples 9

CHICKEN User's Manual - The User's Manual
4.3.1.2 Compiling your program

Compile the file foo . scm:

% csc foo.scm

This will produce the foo executable:

oe

1s
foo foo.scm

4.3.1.3 Running your program

To run your newly compiled executable use:

% foo
3628800

If yougeta foo: command not found error, you might want to try with . / foo instead (or, in Unix
machines, modify your PATH environment variable to include your current directory).

4.3.2 An example with multiple files

If multiple bodies of Scheme code are to be combined into a single executable, then we have to compile each
file and link the resulting object files together with the runtime system.

Let's consider an example where your program consists of multiple source files.

4.3.2.1 Writing your source files

The declarations in these files specify which of the compiled files is the main module, and which is the library
module. An executable can only have one main module, since a program has only a single entry-point. In this
case foo. scmis the main module, because it doesn't have a unit declaration:

;,; foo.scm
; The declaration marks this source file as dependant on the symbols provided
; by the bar unit:

(declare (uses bar))

(write (fac 10)) (newline)
bar.scm will be our library:

; ;7 bar.scm

; The declaration marks this source file as the bar unit. The names of the
; units and your files don't need to match.
(declare (unit bar))

(define (fac n)
(if (zero? n)
1
(*n (fac (- n 1)))))

4.3.1 A simple example (with one source file) 10

CHICKEN User's Manual - The User's Manual

4.3.2.2 Compiling and running your program

You should compile your two files with the following commands:

oe

csc —-c bar.scm
% csc -c foo.scm

That should produce two files, bar .o and foo. o. They contain the code from your source files in compiled
form.

To link your compiled files use the following command:

)

% csc foo.o bar.o -o foo

This should produce the foo executable, which you can run just as in the previous example. At this point you
can also erase the * . o files.

You could avoid one step and link the two files just as foo . scm is compiled:

oe

csc —-c bar.scm
csc foo.scm bar.o -o foo

oe

Note that if you want to distribute your program, you might want it to follow the GNU Coding Standards. One
relatively easy way to achieve this is to use Autoconf and Automake, two tools made for this specific purpose.

4.4 Extending the compiler

The compiler supplies a couple of hooks to add user-level passes to the compilation process. Before
compilation commences any Scheme source files or compiled code specified using the —extend option are
loaded and evaluated. The parameters user-options-pass, user-read-pass,
user-preprocessor-pass, user-pass, user-pass-2anduser-post-—-analysis—-pass
can be set to procedures that are called to perform certain compilation passes instead of the usual processing
(for more information about parameters see: Supported language.

[parameter] user-options-pass
Holds a procedure that will be called with a list of command-line arguments and should return two
values: the source filename and the actual list of options, where compiler switches have their leading
- (hyphen) removed and are converted to symbols. Note that this parameter is invoked before
processing of the —extend option, and so can only be changed in compiled user passes.
[parameter] user-read-pass
Holds a procedure of three arguments. The first argument is a list of strings with the code passed to
the compiler via ~prelude options. The second argument is a list of source files including any files
specified by ~-prologue and —epilogue. The third argument is a list of strings specified using
—-postlude options. The procedure should return a list of toplevel Scheme expressions.
[parameter] user-preprocessor-pass
Holds a procedure of one argument. This procedure is applied to each toplevel expression in the
source file before macro-expansion. The result is macro-expanded and compiled in place of the
original expression.
[parameter] user-pass
Holds a procedure of one argument. This procedure is applied to each toplevel expression after
macro-expansion. The result of the procedure is then compiled in place of the original expression.
[parameter] user-pass-2
Holds a procedure of three arguments, which is called with the canonicalized node-graph as its sole
argument. The result is ignored, so this pass has to mutate the node-structure to cause any effect.

4.3.2 An example with multiple files 11

CHICKEN User's Manual - The User's Manual

[parameter] user-post-analysis-pass
Holds a procedure that will be called after every performed program analysis pass. The procedure
(when defined) will be called with seven arguments: a symbol indicating the analysis pass, the
program database, the current node graph, a getter and a setter-procedure which can be used to access
and manipulate the program database, which holds various information about the compiled program, a
pass iteration count, and an analysis continuation flag. The getter procedure should be called with two
arguments: a symbol representing the binding for which information should be retrieved, and a
symbol that specifies the database-entry. The current value of the database entry will be returned or
#£, if no such entry is available. The setter procedure is called with three arguments: the symbol and
key and the new value. The pass iteration count currently is meaningful only for the 'opt pass. The
analysis continuation flag will be # £ for the last 'opt pass. For information about the contents of the
program database contact the author.

Loaded code (via the —~extend option) has access to the library units extras, srfi-1, srfi-4,
utils, regex and the pattern matching macros. Multithreading is not available.

Note that the macroexpansion/canonicalization phase of the compiler adds certain forms to the source
program. These extra expressions are not seen by user—-preprocessor-pass but by user-pass.

4.5 Distributing compiled C files

It is relatively easy to create distributions of Scheme projects that have been compiled to C. The runtime
system of CHICKEN consists of only two handcoded C files (runtime.c and chicken.h), plus the file
chicken-config.h, which is generated by the build process. All other modules of the runtime system and
the extension libraries are just compiled Scheme code. The following example shows a minimal application,
which should run without changes on the most frequent operating systems, like Windows, Linux or FreeBSD:

Let's take a simple example.

; hello.scm
(print)

o)

% chicken hello.scm -optimize-level 3 -output-file hello.c

Compiled to C, we get hello.c. We need the files chicken.h and runt ime. ¢, which contain the basic
runtime system, plus the three basic library files 1ibrary.c, eval.c and extras.c which contain the
same functionality as the library linked into a plain CHICKEN-compiled application, or which is available by
default in the interpreter, csi:

oe

cd /tmp
echo ' (print "Hello World.")' > hello.scm

cp SCHICKEN_BUILD/runtime.c .

cp $SCHICKEN_BUILD/library.c .

cp SCHICKEN_BUILD/eval.c

cp SCHICKEN_BUILD/extras.c

gcc —-static -Os —-fomit-frame-pointer runtime.c library.c eval.c \
extras.c hello.c -o hello -1m

o° o o° o o

oe

Now we have all files together, and can create an tarball containing all the files:

oe

tar cf hello.tar Makefile hello.c runtime.c library.c eval.c extras.c chicken.h
% gzip hello.tar

This is naturally rather simplistic. Things like enabling dynamic loading, estimating the optimal stack-size and

4.4 Extending the compiler 12

CHICKEN User's Manual - The User's Manual

selecting supported features of the host system would need more configuration- and build-time support. All
this can be addressed using more elaborate build-scripts, makefiles or by using autoconf/automake.

Note also that the size of the application can still be reduced by removing extras and eval and compiling
hello.scm with the ~explicit-use option.

For more information, study the CHICKEN source code and/or get in contact with the author.
Previous: index.html

Next: Using the interpreter

4.5 Distributing compiled C files 13

5 Using the interpreter

CHICKEN provides an interpreter named csi for evaluating Scheme programs and expressions interactively.

5.1 Interpreter command line format
csi {FILENAME |OPTION}

where F ILENAME specifies a file with Scheme source-code. If the extension of the source file is . scm, it
may be omitted. The runtime options described in Compiler command line format are also available for the
interpreter. If the environment variable CSI_OPTIONS is set to a list of options, then these options are
additionally passed to every direct or indirect invocation of csi. Please note that runtime options (like
—:...)can not be passed using this method. The options recognized by the interpreter are:

Ignore everything on the command-line following this marker. Runtime options (- : . . .) are still
recognized.

-1 -case-insensitive
Enables the reader to read symbols case insensitive. The default is to read case sensitive (in violation
of R5RS). This option registers the case—insensitive feature identifier.

-b -batch
Quit the interpreter after processing all command line options.

-e -eval EXPRESSIONS
Evaluate EXPRESSIONS. This option implies ~batch and —~quiet, so no startup message will be
printed and the interpreter exits after processing all —eval options and/or loading files given on the
command-line.

-p -print EXPRESSIONS
Evaluate EXPRESSIONS and print the results of each expression using print. Implies ~batch and
—quiet.

-P -pretty-print EXPRESSIONS
Evaluate EXPRESSIONS and print the results of each expression using pretty-print. Implies
-batch and —quiet.

-D -feature SYMBOL
Registers SYMBOL to be a valid feature identifier for cond-expand and feature?.

-h -help
Write a summary of the available command line options to standard output and exit.

-I -include-path PATHNAME
Specifies an alternative search-path for files included via the include special form. This option may
be given multiple times. If the environment variable CHICKEN_INCLUDE_PATH is set, it should
contain a list of alternative include pathnames separated by ; .

-k -keyword-style STYLE
Enables alternative keyword syntax, where STYLE may be either prefix (as in Common Lisp) or
suffix (asin DSSSL). Any other value is ignored.

-n -no-init
Do not load initialization-file. If this option is not given and the file . /.csirc or SHOME/.csirc
exists, then it is loaded before the read-eval-print loop commences.

-W -no-warnings
Disables any warnings that might be issued by the reader or evaluated code.

-q -quiet
Do not print a startup message. Also disables generation of call-trace information for interpreted code.

-s -script PATHNAME

5 Using the interpreter 14

http://galinha.ucpel.tche.br/Using%20the%20compiler#Compiler%20command%20line%20format

CHICKEN User's Manual - The User's Manual

This is equivalent to ~-batch -quiet -no-init PATHNAME. Arguments following
PATHNAME are available by using command-1ine-arguments and are not processed as
interpreter options. Extra options in the environment variable CSI_OPTIONS are ignored.

-ss PATHNAME
The same as —s PATHNAME but invokes the procedure ma in with the value of
(command-line—arguments) as its single argument. If the main procedure returns an integer
result, then the interpreter is terminated, returning the integer as the status code back to the invoking
process. Any other result terminates the interpreter with a zero exit status.

-R -require-extension NAME
Equivalent to evaluating (require—extension NAME).

-v -version
Write the banner with version information to standard output and exit.

5.2 Writing Scheme scripts

Since UNIX shells use the # ! notation for starting scripts, anything following the characters # ! is ignored,
with the exception of the special symbols # ! optional, #!key, #!restand#!eof.

The easiest way is to use the —script option like this:

% cat foo

#! /usr/local/bin/csi -script

(print (eval (with-input-from-string
(car (command-line-arguments))
read)))

oe

chmod +x foo
foo "(+ 3 4)"

oe

~J

The parameter command-1line—-arguments is set to a list of the parameters that were passed to the
Scheme script. Scripts can be compiled to standalone executables (don't forget to declare used library units).

CHICKEN supports writing shell scripts in Scheme for these platforms as well, using a slightly different
approach. The first example would look like this on Windows:

C:>type foo.bat
@;csibatch %0 %1 %2 %3 %4 %5 %6 %7 %8 %9
(print (eval (with-input-from-string
(car (command-line-arguments))
read)))

C:>foo "(+ 3 4)"
7

Like UNIX scripts, batch files can be compiled. Windows batch scripts do not accept more than 8 arguments.

Since it is sometimes useful to run a script into the interpreter without actually running it (for example to test
specific parts of it), the option —ss can be used as an alternative to —script. -ss PATHNAME is
equivalentto —script PATHNAME butinvokes (main (command-line-arguments)) after loading
all top-level forms of the script file. The result of main is returned as the exit status to the shell. Any
non-numeric result exits with status zero:

% cat hi.scm

(define (main args)
(print "Hi, " (car args))
0)

5.1 Interpreter command line format 15

CHICKEN User's Manual - The User's Manual

)

% csi -ss hi.scm you
Hi, you

% csi —-g

#;1> ,1 hi.scm

#;2> (main (list "ye all"))
Hi, ye all

0

#;3>

5.3 Toplevel commands

The toplevel loop understands a number of special commands:

9
Show summary of available toplevel commands.
J FILENAME ...
Load files with given FILENAMES
,In FILENAME ...
Load files and print result(s) of each top-level expression.
,p EXP
Pretty-print evaluated expression EXP.
,d EXP
Describe result of evaluated expression EXP.
,du EXP
Dump contents of the result of evaluated expression EXP.
,dur EXP N
Dump N bytes of the result of evaluated expression EXP.
,.exn

Describes the last exception that occurred and adds it to the result history (it can be accessed using the

notation).
q
Quit the interpreter.
By
Show system information.
,s TEXT ...
Execute shell-command.
,t EXP
Evaluate form and print elapsed time.
x EXP

Pretty-print macroexpanded expression EXP (the expression is not evaluated).

,tr SYMBOL ...
Enables tracing of the toplevel procedures with the given names.

#,1> (fac 10) ==> 3628800
#,2> ,tr fac

#,3> (fac 3)

| (fac 3)

| (fac 2)

| (fac 1)

| (fac 0)

| fac -> 1

| fac > 1

| fac -> 2

| fac —> 6 ==> 6
#,4> ,utr fac

#,5> (fac 3) => 6

5.2 Writing Scheme scripts

16

CHICKEN User's Manual - The User's Manual

k
;utr SYMBOL ...
Disables tracing of the given toplevel procedures.
,br SYMBOL ...
Sets a breakpoint at the procedures named SYMBOL Breakpoint can also be trigged using the
breakpoint procedure.
,ubr SYMBOL ...
Removes breakpoints.
,C
Continues execution from the last invoked breakpoint.
,breakall
Enable breakpoints for all threads (this is the default).
,breakonly THREAD
Enable breakpoints only for the thread returned by the expression THREAD.
,info

Lists traced procedures and breakpoints.

,step EXPR
Evaluates EXPR in single-stepping mode. On each procedure call you will be presented with a menu
that allows stepping to the next call, leaving single-stepping mode or triggering a breakpoint. Note
that you will see some internal calls, and unsafe or heavily optimized compiled code might not be
stepped at all. Single-stepping mode is also possible by invoking the singlestep procedure.

You can define your own toplevel commands using the toplevel-command procedure:

5.4 toplevel-command

[procedure] (toplevel-command SYMBOL PROC [HELPSTRING])

Defines or redefines a toplevel interpreter command which can be invoked by entering , SYMBOL. PROC will
be invoked when the command is entered and may read any required argument via read (or read-1ine). If
the optional argument HELP STRING is given, it will be listed by the , ? command.

5.5 History access

The interpreter toplevel accepts the special object # [INDEX] which returns the result of entry number
INDEX in the history list. If the expression for that entry resulted in multiple values, the first result (or an
unspecified value for no values) is returned. If no INDEX is given (and if a whitespace or closing paranthesis
character follows the #, then the result of the last expression is returned. Note that the value returned is
implicitly quoted.

5.6 set-describer!

[procedure] (set-describer! TAG PROC)

Sets a custom description handler that invokes PROC when the , d command is invoked with a record-type
object that has the type TAG (a symbol). PROC is called with two arguments: the object to be described and an
output-port. It should write a possibly useful textual description of the object to the passed output-port. For
example:

#;1> (define-record point x vy)

5.3 Toplevel commands 17

CHICKEN User's Manual - The User's Manual

#;2> (set-describer! 'point
(lambda (pt o)
(print "a point with x=" (point-x pt) " and y=" (point-y pt))))
#;3> ,d (make-point 1 2)
a point with x=1 and y=2

5.7 Auto-completion and edition

On platforms that support it, it is possible to get auto-completion of symbols, history (over different csi
sessions) and a more feature-full editor for the expressions you type using the
http://www.call-with-current-continuation.org/eggs/readline.html egg by Tony Garnock Jones. It is very
useful for interactive use of csi.

To enable it install the egg and put this in your ~/ . csirc file:

(use readline regex)
(current—-input-port (make-gnu-readline-port))
(gnu-history-install-file-manager

(string-append (or (getenv "HOME") ".") "/.csi.history"))

More details are available in the egg's documentation.

5.8 Accessing documentation

You can access the manual directly from cs1i using the man extension by Mario Domenech Goulart.

To enable it install the egg and put this in your ~/ . csirc file:

(use man)
(man:load)

Then, in cs1i, you can search for definitions using man : search as in:

(man:search "case")

Note that the search uses regular expressions. To view the documentation for one entry from the manual, use

man:help asin:

(man:help "case-lambda")

Note: Currently the documentation provided by the man extension corresponds to Chicken's 2.429, one of the

last releases whose documentation was in the texinfo format (the format the man extension parses).

Previous: Using the compiler

Next: Supported language

5.6 set-describer!

18

http://www.call-with-current-continuation.org/eggs/readline.html
http://www.call-with-current-continuation.org/eggs/readline.html
http://www.call-with-current-continuation.org/eggs/man.html

6 Supported language

¢ Deviations from the standard

¢ Extensions to the standard

¢ Non-standard read syntax

¢ Non-standard macros and special forms

e Pattern matching

® Declarations

® Parameters

¢ Unit library basic Scheme definitions

¢ Unit eval evaluation and macro-handling
¢ Unit extras useful utility definitions

® Unit srfi-1 List Library

¢ Unit srfi-4 Homogeneous numeric vectors
® Unit srfi-13 String library

e Unit srfi-14 character set library

¢ Unit match pattern matching runtime-support
¢ Unit regex regular expressions

 Unit srfi-18 multithreading

¢ Unit posix Unix-like services

e Unit utils Shell scripting and file operations
¢ Unit tcp basic TCP-sockets

¢ Unit lolevel low-level operations

Previous: Using the interpreter

Next: Interface to external functions and variables

6 Supported language

7 Deviations from the standard

Identifiers are by default case-sensitive (see Compiler command line format).

[4.1.3] The maximal number of arguments that may be passed to a compiled procedure or macro is 120. A
macro-definition that has a single rest-parameter can have any number of arguments. If the 1ibffi library is
available on this platform, and if it is installed, then CHICKEN can take advantage of this. See the README
file for more details.

[4.2.2] 1etrec does evaluate the initial values for the bound variables sequentially and not in parallel, that
is:

(letrec ((x 1) (y 2)) (cons x y))

is equivalent to

(let ((x (void)) (y (void)))
(set! x 1)
(set! v 2)

(cons x y))
where R5RS requires

(let ((x (void)) (y (void)))
(let ((tmpl 1) (tmp2 2))
(set! x tmpl)
(set! y tmp2)
(cons x y)))

[4.3] syntax—-rules macros are not provided but available separately.

[6.1] equal? compares all structured data recursively, while RSRS specifies that eqv ? is used for data other
than pairs, strings and vectors.

[6.2.4] The runtime system uses the numerical string-conversion routines of the underlying C library and so
does only understand standard (C-library) syntax for floating-point constants.

[6.2.5] There is no built-in support for rationals, complex numbers or extended-precision integers (bignums).
The routines complex?, real? and rational? are identical to the standard procedure number?. The
procedures numerator, denominator, rationalize, make-rectangular and make-polar are
not implemented. Fixnums are limited to A+230 (or A+262 on 64-bit hardware). Support for extended numbers
is available as a separate package, provided the GNU multiprecision library is installed.

[6.2.6] The procedure st ring->number does not obey read/write invariance on inexact numbers.

[6.4] The maximum number of values that can be passed to continuations captured using
call-with-current-continuation is 120.

[6.5] Code evaluated in scheme—-report—environment or null-environment still sees
non-standard syntax.

[6.6.2] The procedure char—ready? always returns #t for terminal ports. The procedure read does not
obey read/write invariance on inexact numbers.

[6.6.3] The procedures write and display do not obey read/write invariance to inexact numbers.

7 Deviations from the standard 20

http://galinha.ucpel.tche.br:8080/Using%20the%20compiler#Compiler%20command%20line%20format
http://chicken.wiki.br/chicken/README

CHICKEN User's Manual - The User's Manual

[6.6.4] The transcript—-on and transcript-off procedures are not implemented.
Previous: Supported language

Next: Extensions to the standard

7 Deviations from the standard

21

8 Extensions to the standard

[2.1] Identifiers may contain special characters if delimited with | ... |.

[2.3] The brackets [...] andthebraces { ... } areprovided as an alternative syntax for (...). A
number of reader extensions is provided. See Non-standard read syntax.

[4] Numerous non-standard macros are provided. See Non-standard macros and special forms for more
information.

[4.1.4] Extended DSSSL style lambda lists are supported. DSSSL parameter lists are defined by the following
grammar:

<parameter-list> ==> <required-parameter>*

(#!optional <optional-parameter>*)]
(#!rest <rest-parameter>)]

(#!'key <keyword-parameter>*)]

=> <ident>

[
[
[

<required-parameter>

<optional-parameter> ==> <ident>

| (<ident> <initializer>)
<rest-parameter> ==> <ident>
<keyword-parameter> ==> <ident>

| (<ident> <initializer>)
<initializer> ==> <expr>

When a procedure is applied to a list of arguments, the parameters and arguments are processed from left to
right as follows:

® Required-parameters are bound to successive arguments starting with the first argument. It shall be an
error if there are fewer arguments than required-parameters.

e Next, the optional-parameters are bound with the remaining arguments. If there are fewer arguments
than optional-parameters, then the remaining optional-parameters are bound to the result of the
evaluation of their corresponding <initializer>, if one was specified, otherwise # £. The corresponding
<initializer> is evaluated in an environment in which all previous parameters have been bound.

o If there is a rest-parameter, then it is bound to a list containing all the remaining arguments left over
after the argument bindings with required-parameters and optional-parameters have been made.

o If # ! key was specified in the parameter-list, there should be an even number of remaining
arguments. These are interpreted as a series of pairs, where the first member of each pair is a keyword
specifying the parameter name, and the second member is the corresponding value. If the same
keyword occurs more than once in the list of arguments, then the corresponding value of the first
keyword is the binding value. If there is no argument for a particular keyword-parameter, then the
variable is bound to the result of evaluating <initializer>, if one was specified, otherwise #f. The
corresponding <initializer> is evaluated in an environment in which all previous parameters have
been bound.

Needing a special mention is the close relationship between the rest-parameter and possible
keyword-parameters. Declaring a rest-parameter binds up all remaining arguments in a list, as described
above. These same remaining arguments are also used for attempted matches with declared
keyword-parameters, as described above, in which case a matching keyword-parameter binds to the
corresponding value argument at the same time that both the keyword and value arguments are added to the
rest parameter list. Note that for efficiency reasons, the keyword-parameter matching does nothing more than
simply attempt to match with pairs that may exist in the remaining arguments. Extra arguments that don't
match are simply unused and forgotten if no rest-parameter has been declared. Because of this, the caller of a
procedure containing one or more keyword-parameters cannot rely on any kind of system error to report
wrong keywords being passed in.

8 Extensions to the standard 22

CHICKEN User's Manual - The User's Manual

It shall be an error for an <ident > to appear more than once in a parameter-list.

If there is no rest-parameter and no keyword-parameters in the parameter-list, then it shall be an error for any
extra arguments to be passed to the procedure.

Example:

((lambda x x) 3 4 5 0) => (3 4 5 06)
((lambda (x y #!rest z) z)

345 6) => (5 6)

((lambda (x y #!optional z #!rest r #l!key i (3 1))
(list x y z i: 1 J: 3))
345 4i: 6 1i: 7) => (345 1i: 6 j: 1)

[4.1.6] set ! for unbound toplevel variables is allowed. set ! (PROCEDURE ...) ...) issupported, as
CHICKEN implements SRFI-17. [4.2.1] The cond form supports SRFI-61.

[4.2.2] It is allowed for initialization values of bindings in a 1et rec construct to refer to previous variables
in the same set of bindings, so

(letrec ((foo 123)
(bar foo))
bar)

is allowed and returns 12 3.
[4.2.3] (begin) is allowed in non-toplevel contexts and evaluates to an unspecified value.
[4.2.5] Delayed expressions may return multiple values.

[5.2.2] CHICKEN extends standard semantics by allowing internal definitions everywhere, and not only at the
beginning of a body. A set of internal definitions is equivalent to a 1let rec form enclosing all following
expressions in the body:

(let ((foo 123))
(bar)
(define foo 456)
(baz foo))

expands into

(let ((foo 123))
(bar)
(letrec ((foo 4506))
(baz foo)))

[5.2] define with a single argument is allowed and initializes the toplevel or local binding to an unspecified
value. CHICKEN supports curried definitions, where the variable name may also be a list specifying a name
and a nested lambda list. So

(define ((make-adder x) y) (+ x y))

is equivalent to

(define (make-adder x) (lambda (y) (+ x v)))

[6] CHICKEN provides numerous non-standard procedures. See the manual sections on library units for more
information.

8 Extensions to the standard 23

http://srfi.schemers.org/srfi-17/srfi-17.html
http://srfi.schemers.org/srfi-61

CHICKEN User's Manual - The User's Manual

[6.2.4] The special IEEE floating-point numbers +nan, +inf and -inf are supported, as is negative zero.

[6.3.4] User defined character names are supported. See char—-name. Characters can be given in
hexadecimal notation using the #AxXX syntax where XX specifies the character code. Character codes above
255 are supported and can be read (and are written) using the AuXXXX and AUXXXXXXXX notations.

Non-standard characters names supported are #\tab, #\1inefeed, #\return, #\alarm, #\vtab,
#\nul, #\page, #\esc, #\delete and #\backspace.

[6.3.5] CHICKEN supports special characters preceded with a backslash \ in quoted string constants. \n
denotes the newline-character, \r carriage return, \b backspace, \t TAB, \v vertical TAB, \a alarm, \f formfeed,
\xXX a character with the code XX in hex and \uXXXX (and \UXXXXXXXX) a unicode character with the code
XXXX. The latter is encoded in UTF-8 format.

The third argument to substring is optional and defaults to the length of the string.

[6.4] force called with an argument that is not a promise returns that object unchanged. Captured
continuations can be safely invoked inside before- and after-thunks of a dynamic-wind form and execute
in the outer dynamic context of the dynamic-wind form.

Implicit non-multival continuations accept multiple values by discarding all but the first result. Zero values
result in the continuation receiving an unspecified value. Note that this slight relaxation of the behaviour of
returning mulitple values to non-multival continuations does not apply to explicit continuations (created with
call-with-current—-continuation).

[6.5] The second argument to eval is optional and defaults to the value of
(interaction—-environment). scheme-report—environment and null-environment
accept an optional 2nd parameter: if not # £ (which is the default), toplevel bindings to standard procedures
are mutable and new toplevel bindings may be introduced.

[6.6] The tilde character (~) is automatically expanded in pathnames. Additionally, if a pathname starts with
SVARIABLE. . ., then the prefix is replaced by the value of the given environment variable.

[6.6.1] if the procedures current—input-port and current-output-port are called with an
argument (which should be a port), then that argument is selected as the new current input- and output-port,
respectively. The procedures open—-input-£file, open-output-file, with-input-from-file,
with-output-to-file,call-with-input-fileand call-with-output—-£file acceptan
optional second (or third) argument which should be one or more keywords, if supplied. These arguments
specify the mode in which the file is opened. Possible values are the keywords # : text, # :binary or
#:append.

[6.7] The exit procedure exits a program right away and does not invoke pending dynamic-wind thunks.
Previous: Deviations from the standard

Next: Non-standard read syntax

8 Extensions to the standard 24

9 Non-standard read syntax

9.1 Multiline Block Comment
#1 ... | #

A multiline block comment. May be nested. Implements SRFI-30

9.2 Expression Comment

#; EXPRESSION

Treats EXPRESSION as a comment.

9.3 External Representation
#, (CONSTRUCTORNAME DATUM ...)

Allows user-defined extension of external representations. (For more information see the documentation for
SRFI-10)

9.4 Syntax Expression

#'EXPRESSION

An abbreviation for (syntax EXPRESSION).

9.5 Location Expression

#SEXPRESSION

An abbreviation for (location EXPRESSION).

9.6 Keyword

#: SYMBOL

Syntax for keywords. Keywords are symbols that evaluate to themselves, and as such don't have to be quoted.

9.7 Multiline String Constant

#<<TAG

9 Non-standard read syntax 25

http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-10/srfi-10.html

CHICKEN User's Manual - The User's Manual

Specifies a multiline string constant. Anything up to a line equal to TAG (or end of file) will be returned as a
single string:

(define msg #<<END

"Hello, world!", she said.
END

)

is equivalent to

(define msg "\"Hello, world!\", she said.")

9.8 Multiline String Constant with Embedded Expressions

#<#TAG

Similar to #<<, but allows substitution of embedded Scheme expressions prefixed with # and optionally
enclosed in curly brackets. Two consecutive #s are translated to a single #:

(define three 3)
(display #<#EOF
This is a simple string with an embedded " ##' character

and substituted expressions: (+ three 99) ==> #(+ three 99)
(three is "#{three}")

EOF

)

prints

This is a simple string with an embedded "“#' character
and substituted expressions: (+ three 99) ==> 102
(three is "3")

9.9 Foreign Declare
#> ... <#

Abbreviation for foreign-declare " ... ").

9.10 Sharp Prefixed Symbol

#5...

oe

Reads like a normal symbol.

9.11 Bang

#l.o..

Interpretation depends on the directly following characters. Only the following are recognized. Any other case
results in a read error.

9.7 Multiline String Constant 26

CHICKEN User's Manual - The User's Manual

9.11.1 Line Comment

e If followed by whitespace or a slash, then everything up the end of the current line is ignored

9.11.2 Eof Object

e If followed by the character sequence eof, then the (self-evaluating) end-of-file object is returned

9.11.3 DSSSL Formal Parameter List Annotation

e If followed by any of the character sequences opt ional, rest or key, then a symbol with the
same name (and prefixed with # !) is returned

9.11.4 Read Mark Invocation

o If a read mark with the same name as the token is registered, then its procedure is called and the result
of the read-mark procedure will be returned

9.12 Case Sensitive Expression

#cs...

Read the next expression in case-sensitive mode (regardless of the current global setting).

9.13 Case Insensitive Expression

#ci...

Read the next expression in case-insensitive mode (regardless of the current global setting).

9.14 Conditional Expansion
#+FEATURE EXPR

Equivalent to

(cond-expand (FEATURE EXPR) (else))
Previous: Extensions to the standard

Next: Non-standard macros and special forms

9.11.1 Line Comment 27

10 Non-standard macros and special forms

10.1 Making extra libraries and extensions available

10.1.1 require-extension

[syntax] (require-extension ID ...)
[syntax] (use ID ...)

This form does all the necessary steps to make the libraries or extensions given in ID . .. available. It loads
syntactic extensions, if needed and generates code for loading/linking with core library modules or separately
installed extensions. use is just a shorter alias for require—extension. This implementation of
require-extension is compliant with SRFI-55 (see the SRFI-55 document for more information).

During interpretation/evaluation require—extension performs one of the following:

e If ID names a built-in feature chicken srfi-0 srfi-2 srfi-6 srfi-8 srfi-9
srfi-10 srfi-17 srfi-23 srfi-30 srfi-39 srfi-55, then nothing is done.

e If ID names one of the syntactic extensions chicken-more-macros chicken-ffi-macros,
then this extension will be loaded.

e If ID names one of the core library units shipped with CHICKEN, then a (load-library 'ID)
will be performed.

¢ [f ID names an installed extension with the syntax or require—at—-runtime attribute, then the
equivalent of (require-for-syntax 'ID) is performed, probably followed by (require
. . .) for any run-time requirements.

® Otherwise, (require—extension ID) isequivalentto (require 'ID).

During compilation, one of the following happens instead:

e If ID names a built-in feature chicken srfi-0 srfi-2 srfi-6 srfi-8 srfi-9
srfi-10 srfi-17 srfi-23 srfi-30 srfi-39 srfi-55, then nothing is done.

e If ID names one of the syntactic extensions chicken-more-macros chicken-ffi-macros,
then this extension will be loaded at compile-time, making the syntactic extensions available in
compiled code.

e If ID names one of the core library units shipped with CHICKEN, or if the option —uses ID has
been passed to the compiler, thena (declare (uses ID)) is generated.

¢ [f ID names an installed extension with the syntax or require—at—-runtime attribute, then the
equivalent of (require-for-syntax 'ID) is performed, and code is emitted to (require

.) any needed run-time requirements.
® Otherwise (require-extension ID) isequivalentto (require 'ID).

To make long matters short - just use require-extension and it will normally figure everything out for
dynamically loadable extensions and core library units.

ID should be a pure extension name and should not contain any path prefixes (for example dir/1ib...)is
illegal).

ID may also be a list that designates an extension-specifier. Currently the following extension specifiers are
defined:

® (srfi NUMBER ...) isrequired for SRFI-55 compatibility and is fully implemented

10 Non-standard macros and special forms 28

http://srfi.schemers.org/srfi-55/srfi-55.html
http://srfi.schemers.org/srfi-55/srfi-55.html

CHICKEN User's Manual - The User's Manual

® (version ID NUMBER) is equivalent to ID, but checks at compile-time whether the extension
named ID is installed and whether its version is equal or higher than NUMBER. NUMBER may be a
string or a number, the comparison is done lexicographically (using st ring>="?).
See also: set—-extension-specifier!
When syntax extensions are loaded that redefine the global toplevel macro-expander (for example the

syntax-case extension), then all remaining expression in the same toplevel form are still expanded with the old
toplevel macro-expander.

10.1.2 define-extension

[syntax] (define-extension NAME CLAUSE ...)

This macro simplifies the task of writing extensions that can be linked both statically and dynamically. If
encountered in interpreted code or code that is compiled into a shared object (specifically if compiled with the

feature chicken-compile-shared, done automatically by csc when compiling with the —~shared or
—dynamic option) then the code given by clauses of the form

(dynamic EXPRESSION ...)
are inserted into the output as a begin form.

If compiled statically (specifically if the feature chicken-compile-shared has not been given), then
this form expands into the following:

(declare (unit NAME))
(provide 'NAME)

and all clauses of the form

(static EXPRESSION ...)
all additionally inserted into the expansion.

As a convenience, the clause

(export IDENTIFIER ...)

is also allowed and is identical to (declare (export IDENTIFIER ...)) (unlessthe
define—extension form occurs in interpreted code, in with it is simply ignored).

Note that the compiler option —~extension NAME is equivalent to prefixing the compiled file with

(define-extension NAME)

10.2 Binding forms for optional arguments

10.2.1 optional

[syntax] (optional ARGS DEFAULT)

10.1.1 require-extension 29

http://www.call-with-current-continuation.org/eggs/syntax-case.html

CHICKEN User's Manual - The User's Manual

Use this form for procedures that take a single optional argument. If ARGS is the empty list DEFAULT is
evaluated and returned, otherwise the first element of the list ARGS. It is an error if ARGS contains more than
one value.

(define (incr x . i) (+ x (optional i 1)))

(incr 10) ==> 11
(incr 12 5) ==> 17
10.2.2 case-lambda

[syntax] (case-lambda (LAMBDA-LIST1 EXP1l ...) ...)

Expands into a lambda that invokes the body following the first matching lambda-list.

(define plus
(case—-lambda
(() 0)
(x) x)
(x y) (+ xvy))
(x y z) (+ (+ xvy) z))
args (apply + args))))

X
X

(
(
(
(

(plus) ==> 9
(plus 1) ==> 1
(plus 1 2 3) ==> 6

For more information see the documentation for SRFI-16

10.2.3 let-optionals
[syntax] (let-optionals ARGS ((VAR1 DEFAULT1) ...) BODY ...)

Binding constructs for optional procedure arguments. ARGS should be a rest-parameter taken from a
lambda-list. let-optionals binds VAR1 ... to available arguments in parallel, or to DEFAULT1
if not enough arguments were provided. let-optionals* binds VARL ... sequentially, so every
variable sees the previous ones. it is an error if any excess arguments are provided.

(let-optionals ' (one two) ((a 1) (b 2) (c 3))
(list a b c)) ==> (one two 3)

10.2.4 let-optionals*
[syntax] (let-optionals* ARGS ((VAR1 DEFAULT1) ... [RESTVAR]) BODY ...)

Binding constructs for optional procedure arguments. ARGS should be a rest-parameter taken from a
lambda-list. let-optionals binds VAR1 ... to available arguments in parallel, or to DEFAULT1
if not enough arguments were provided. let-optionals* binds VARL ... sequentially, so every
variable sees the previous ones. If a single variable RESTVAR is given, then it is bound to any remaining
arguments, otherwise it is an error if any excess arguments are provided.

(let-optionals* ' (one two) ((a 1) (b 2) (c a))
(list a b ¢c)) ==> (one two one)

10.2.1 optional 30

http://srfi.schemers.org/srfi-16/srfi-16.html

CHICKEN User's Manual - The User's Manual

10.3 Other binding forms

10.3.1 and-let*

[syntax] (and-let* (BINDING ...) EXPl EXP2 ...)

SRFI-2. Bind sequentially and execute body. BINDING can be a list of a variable and an expression, a list
with a single expression, or a single variable. If the value of an expression bound to a variable is # £, the
and-let* form evaluates to # £ (and the subsequent bindings and the body are not executed). Otherwise the
next binding is performed. If all bindings/expressions evaluate to a true result, the body is executed normally
and the result of the last expression is the result of the and—1et* form. See also the documentation for
SRFI-2.

10.3.2 rec

[syntax] (rec NAME EXPRESSION)
[syntax] (rec (NAME VARIABLE ...) BODY ...)

Allows simple definition of recursive definitions. (rec NAME EXPRESSION) isequivalentto (letrec

((NAME EXPRESSION)) NAME)and(rec (NAME VARIABLE ...) BODY ...)isﬂmsmneas
(letrec ((NAME (lambda (VARIABLE ...) BODY ...))) NAME).
10.3.3 cut

[syntax] (cut SLOT ...)
[syntax] (cute SLOT ...)

Syntactic sugar for specializing parameters.

10.3.4 define-values
[syntax] (define-values (NAME ...) EXP)

Defines several variables at once, with the result values of expression EXP.

10.3.5 fluid-let
[syntax] (fluid-let ((VAR1 X1) ...) BODY ...)
Binds the variables VAR1 . .. dynamically to the values X1 ... during execution of BODY

10.3.6 let-values
[syntax] (let-values (((NAME ...) EXP) ...) BODY ...)

Binds multiple variables to the result values of EXP All variables are bound simultaneously.

10.3 Other binding forms 31

http://srfi.schemers.org/srfi-2/srfi-2.html
http://srfi.schemers.org/srfi-26/srfi-26.html

CHICKEN User's Manual - The User's Manual

10.3.7 let*-values

[syntax] (let*-values (((NAME ...) EXP) ...) BODY ...)
Binds multiple variables to the result values of EXP The variables are bound sequentially.
(let*-values (((a b) (values 2 3))
((p) (+ ab)))
P) ==> 5

10.3.8 letrec-values

[syntax] (letrec-values (((NAME ...) EXP) ...) BODY ...)
Binds the result values of EXP . .. to multiple variables at once. All variables are mutually recursive.
(letrec-values (((odd even)

(values

(lambda (n) (if (zero? n) #f (even (subl n))))
(lambda (n) (if (zero? n) #t (odd (subl n)))))))
(odd 17)) —=> #t
10.3.9 parameterize
[syntax] (parameterize ((PARAMETER1 X1) ...) BODY ...)
Binds the parameters PARAMETER1 . .. dynamically to the values X1 ... during execution of BODY

. . ..(see also: make-parameter in Parameters). Note that PARAMETER may be any expression that
evaluates to a parameter procedure.

10.3.10 receive

[syntax] (receive (NAME1l ... [. NAMEn]) VALUEEXP BODY ...)
[syntax] (receive VALUEEXP)

SRFI-8. Syntactic sugar for call-with-values. Binds variables to the result values of VALUEEXP and
evaluates BODY

The syntax

(receive VALUEEXP)

is equivalent to

(receive _ VALUEEXP _)

10.3.11 set!-values
[syntax] (set!-values (NAME ...) EXP)

Assigns the result values of expression EXP to multiple variables.

10.3.7 let*-values

CHICKEN User's Manual - The User's Manual

10.4 Substitution forms and macros

10.4.1 define-constant
[syntax] (define-constant NAME CONST)

Define a variable with a constant value, evaluated at compile-time. Any reference to such a constant should
appear textually after its definition. This construct is equivalent to de f i ne when evaluated or interpreted.
Constant definitions should only appear at toplevel. Note that constants are local to the current compilation
unit and are not available outside of the source file in which they are defined. Names of constants still exist in
the Scheme namespace and can be lexically shadowed. If the value is mutable, then the compiler is careful to
preserve its identity. CONST may be any constant expression, and may also refer to constants defined via
define-constant previously. This for should only be used at top-level.

10.4.2 define-inline

[syntax] (define-inline (NAME VAR ... [. VAR]) BODY ...)
[syntax] (define-inline NAME EXP)

Defines an inline procedure. Any occurrence of NAME will be replaced by EXP or (lambda (VAR

[. VAR]) BODY ...).Thisis similar to a macro, but variable-names and -scope will be correctly
handled. Inline substitutions take place after macro-expansion. EXP should be a lambda-expression. Any
reference to NAME should appear textually after its definition. Note that inline procedures are local to the
current compilation unit and are not available outside of the source file in which they are defined. Names of
inline procedures still exist in the Scheme namespace and can be lexically shadowed. This construct is
equivalent to de fine when evaluated or interpreted. Inline definitions should only appear at toplevel.

10.4.3 define-macro

[syntax] (define-macro (NAME VAR ... [. VAR]) EXP1 ...)
[syntax] (define-macro NAME (lambda (VAR ... [. VAR]) EXP1l ...))
[syntax] (define-macro NAME1l NAMEZ2)

Define a globally visible macro special form. The macro is available as soon as it is defined, i.e. it is
registered at compile-time. If the file containing this definition invokes eval and the declaration
run—-time-macros (or the command line option —run-time-macros) has been used, then the macro is
visible in evaluated expressions during runtime. The second possible syntax for define-macro is allowed
for portability purposes only. In this case the second argument must be a lambda-expression or a macro name.
Only global macros can be defined using this form. (define-macro NAME1 NAMEZ2) simply copies the
macro definition from NAME2 to NAME 1, creating an alias.

Extended lambda list syntax (# ! opt 1onal, etc.) can be used but note that arguments are source expressions
and thus default values for optional or keyword arguments should take this into consideration.

10.4.4 define-for-syntax

[syntax] (define-for-syntax (NAME VAR ... [. VAR]) EXP1l ...)
[syntax] (define-for-syntax NAME [VALUE])

10.4 Substitution forms and macros 33

CHICKEN User's Manual - The User's Manual

Defines the toplevel variable NAME at macro-expansion time. This can be helpful when you want to define
support procedures for use in macro-transformers, for example.

10.5 Conditional forms

10.5.1 select
[syntax] (select EXP ((KEY ...) EXPl ...) ... [(else EXPn ...)1])

This is similar to case, but the keys are evaluated.

10.5.2 unless
[syntax] (unless TEST EXP1 EXP2 ...)

Equivalent to:

(if (not TEST) (begin EXP1 EXP2 ...))

10.5.3 when

[syntax] (when TEST EXP1 EXP2 ...)

Equivalent to:

(if TEST (begin EXP1l EXP2 ...))

10.6 Record structures

10.6.1 define-record
[syntax] (define-record NAME SLOTNAME ...)

Defines a record type. Call make—-NAME to create an instance of the structure (with one
initialization-argument for each slot). (NAME? STRUCT) tests any object for being an instance of this
structure. Slots are accessed via (NAME-SLOTNAME STRUCT) and updated using
(NAME-SLOTNAME-set ! STRUCT VALUE).

define-record point x y)
define pl (make-point 123 456))

(

(

(point? pl) ==> #t
(point-x pl) ==> 123
(point-y-set! pl 99)

(point-y pl) ==> 99

10.4.4 define-for-syntax 34

CHICKEN User's Manual - The User's Manual
10.6.2 define-record-printer

[syntax] (define-record-printer (NAME RECORDVAR PORTVAR) BODY ...)
[syntax] (define-record-printer NAME PROCEDURE)

Defines a printing method for record of the type NAME by associating a procedure with the record type. When
a record of this type is written using display, write or print, then the procedure is called with two
arguments: the record to be printed and an output-port.

(define-record foo x y z)
(define £ (make-foo 1 2 3))
(define-record-printer (foo x out)
(fprintf out
(foo-x x) (foo-y x) (foo-z x)))

(define-reader—-ctor 'foo make-foo)
(define s (with-output-to-string

(lambda () (write f))))
s =
(equal? £ (with-input-from-string

s read))) ==> #t

define-record-printer works also with SRFI-9 record types.

10.6.3 define-record-type

[syntax] (define-record-type NAME
(CONSTRUCTOR TAG ...)
PREDICATE
(FIELD ACCESSOR [MODIFIER]) ...)

SRFI-9 record types. For more information see the documentation for SRFI-9.

10.7 Other forms

10.7.1 assert

[syntax] (assert EXP [STRING ARG ...])

Signals an error if EXP evaluates to false. An optional message STRING and arguments ARG . .. may be
supplied to give a more informative error-message. If compiled in unsafe mode (either by specifying the

—unsafe compiler option or by declaring (unsafe)), then this expression expands to an unspecified value.
The result is the value of EXP.

10.7.2 cond-expand

[syntax] (cond-expand FEATURE-CLAUSE ...)

Expands by selecting feature clauses. This form is allowed to appear in non-toplevel expressions.
Predefined feature-identifiers are "situation" specific:

compile

10.6.2 define-record-printer 35

http://srfi.schemers.org/srfi-9/srfi-9.html

CHICKEN User's Manual - The User's Manual

eval, library,match, compiling, srfi-11,srfi-15,srfi-31,srfi-26,srfi-16,
utils, regex, srfi-4,match, srfi-1,srfi-69,srfi-28,extras,srfi-8,srfi-6,
srfi-2,srfi-0,srfi-10,srfi-9,srfi-55,srfi-61 chicken, srfi-23,srfi-30,
srfi-39,srfi-62,srfi-17,srfi-12.

load
srfi-69,srfi-28,extras,srfi-8,srfi-6,srfi-2,srfi-0,srfi-10,srfi-9,
srfi-55,srfi-61, chicken,srfi-23,srfi-30,srfi-39,srfi-62,srfi-17,
srfi-12. library is implicit.

eval

match, csi,srfi-11,srfi-15,srfi-31,srfi-26,srfi-16,srfi-69, srfi-28,
extras, srfi-8,srfi-6,srfi-2,srfi-0,srfi-10,srfi-9,srfi-55,srfi-61,
chicken, srfi-23,srfi-30,srfi-39, srfi-62,srfi-17,srfi-12. libraryis
implicit.

The following feature-identifiers are available in all situations: (machine-byte-order),
(machine-type), (software-type), (software-version), where the actual feature-identifier is
platform dependent.

In addition the following feature-identifiers may exist: applyhook, extraslot, ptables, dload.

For further information, see the documentation for SRFI-0.

10.7.3 ensure
[syntax] (ensure PREDICATE EXP [ARGUMENTS ...])

Evaluates the expression EXP and applies the one-argument procedure PREDICATE to the result. If the
predicate returns # £ an error is signaled, otherwise the result of EXP is returned. If compiled in unsafe mode
(either by specifying the —unsafe compiler option or by declaring (unsafe)), then this expression
expands to an unspecified value. If specified, the optional ARGUMENTS are used as arguments to the
invocation of the error-signalling code, as in (error ARGUMENTS ...).Ifno ARGUMENTS are given, a
generic error message is displayed with the offending value and PREDICATE expression.

10.7.4 eval-when
[syntax] (eval-when (SITUATION ...) EXP ...)

Controls evaluation/compilation of subforms. STTUATION should be one of the symbols eval, compile or
load. When encountered in the evaluator, and the situation specifier eval is not given, then this form is not
evaluated and an unspecified value is returned. When encountered while compiling code, and the situation
specifier compi le is given, then this form is evaluated at compile-time. When encountered while compiling
code, and the situation specifier Load is not given, then this form is ignored and an expression resulting into
an unspecified value is compiled instead.

The following table should make this clearer:

In compiled code In interpreted code
eval ignore evaluate
compile evaluate at compile time ignore
load compile as normal ignore
The situation specifiers compile-time and run-time are also defined and have the same meaning as

10.7.2 cond-expand 36

http://srfi.schemers.org/srfi-0/srfi-0.html

CHICKEN User's Manual - The User's Manual

compile and load, respectively.

10.7.5 include

[syntax] (include STRING)
Include toplevel-expressions from the given source file in the currently compiled/interpreted program. If the

included file has the extension . scm, then it may be omitted. The file is searched in the current directory and,
if not found, in all directories specified in the ~include-path option.

10.7.6 nth-value

[syntax] (nth-value N EXP)

Returns the Nth value (counting from zero) of the values returned by expression EXP.

10.7.7 time

[syntax] (time EXP1 ...)

Evaluates EXP1 ... and prints elapsed time and some values about GC use, like time spent in major GCs,
number of minor and major GCs.

Previous: Non-standard read syntax

Next: Pattern matching

10.7.4 eval-when 37

11 Pattern matching

(This description has been taken mostly from Andrew Wright's postscript document)

Pattern matching allows complicated control decisions based on data structure to be expressed in a concise

manner. Pattern matching is found in several modern languages, notably Standard ML, Haskell and Miranda.

These syntactic extensions internally use the mat ch library unit.

Note: this pattern matching package is not compatible with hygienic macro-expanders like the
syntax-case extension (available separately).

The basic form of pattern matching expression is:
(match exp [pat body] ...)

where exp is an expression, pat is a pattern, and body is one or more expressions (like the body of a
lambda-expression). The mat ch form matches its first subexpression against a sequence of patterns, and
branches to the body corresponding to the first pattern successfully matched. For example, the following
code defines the usual map function:

(define map
(lambda (f 1)
(match 1
Lo "0l
[(x . y) (cons (f x) (map f y))1)))

The first pattern () matches the empty list. The second pattern (x . y) matches a pair, binding x to the
first component of the pair and y to the second component of the pair.

11.1 Pattern Matching Expressions

The complete syntax of the pattern matching expressions follows:

exp ::= (match exp clause ...)
| (match-lambda clause ...)
| (match-lambda* clause ...)
| (match-let ([pat exp] ...) body)
| (match-let* ([pat exp] ...) body)
| (match-letrec ([pat exp] ...) body)
| (match-let var ([pat exp] ...) body)
| (match-define pat exp)
clause ::= [pat body]
| [pat (=> identifier) body]
pat ::= identifier matches anything, and binds identifier as a variable
Il _ anything
| () itself (the empty list)
| #t itself
| #f itself
| string an ‘equal?' string
| number an “equal?' number
| character an “equal?' character
| 's—expression an “equal?' s-expression
| (pat-1 ... pat-n) a proper list of n elements
| (pat-1 ... pat-n . pat-n+l)
a list of n or more elements
| (pat-1 ... pat-n pat-n+l ..k)

11 Pattern matching

38

CHICKEN User's Manual - The User's Manual

a proper list of nt+k or more elements [1]

| #(pat-1 ... pat-n) a vector of n elements
| #(pat-1 ... pat-n pat-n+l ..k)
a vector of n+k or more elements
| ($ struct pat-1 ... pat-n)
a structure
| (= field pat) a field of a structure
| (and pat-1 ... pat-n)
if all of pat-1 through pat-n match
| (or pat-1 ... pat-n)
if any of pat-1 through pat-n match
| (not pat-1 ... pat-n)
if none of pat-1 through pat-n match
| (? predicate pat-1 ... pat-n)
if predicate true and pat-1 through pat-n all match
| (set! identifier) anything, and binds identifier as a setter
| (get! identifier) anything, and binds identifier as a getter
| “ap a quasipattern
ap ::= () itself (the empty list)
| #t itself
| #f itself
| string an ‘equal?' string
| number an “equal?' number
| character an “equal?' character
| symbol an “equal?' symbol
| (gp—1 ... gp-n) a proper list of n elements
| (gp-1 ... gp—n . gp-n+l)
a list of n or more elements
| (gp—1 ... gp—n gp—nt+l ..k)
a proper list of n+k or more elements
[#(gp-1 ... gp-n) a vector of n elements
| #(gp-1 ... gp-n gp-n+l ..k)
a vector of n+k or more elements
| ,pat a pattern
| ,@pat a pattern, spliced
The notation . . k denotes a keyword consisting of three consecutive dots (ie., . . .), or two dots and an
non-negative integer (eg., . . 1, . . 2), or three consecutive underscores (ie.,), or two underscores and a
non-negative integer. The keywords . . k and__ k are equivalent. The keywords ...,___ ,..0,and__ 0

are equivalent.
The next subsection describes the various patterns.

The match-lambda and match—lambda* forms are convenient combinations of match and 1ambda,
and can be explained as follows:

(match-lambda [pat body] ...) (lambda (x) (match x [pat body] ...))
(match-lambda* [pat body] ...) = (lambda x (match x [pat body] ...))

where x is a unique variable. The mat ch—1ambda form is convenient when defining a single argument
function that immediately destructures its argument. The mat ch-1ambda* form constructs a function that
accepts any number of arguments; the patterns of mat ch—1ambda* should be lists.

The match-let, match-let*, match-letrec, and match-define forms generalize Scheme's let,

let*, letrec, and define expressions to allow patterns in the binding position rather than just variables.
For example, the following expression:

(match-let ([(x y z) (list 1 2 3)]) body ...)

binds x to 1, y to 2, and z to 3 in body These forms are convenient for destructuring the result of a

11.1 Pattern Matching Expressions 39

CHICKEN User's Manual - The User's Manual

function that returns multiple values as a list or vector. As usual for let rec and define, pattern variables
bound by match-letrec and mat ch—-define should not be used in computing the bound value.

The match, match-lambda, and match-lambda* forms allow the optional syntax (=>
identifier) between the pattern and the body of a clause. When the pattern match for such a clause
succeeds, the identifier is bound to a “failure procedure' of zero arguments within the body. If this
procedure is invoked, it jumps back to the pattern matching expression, and resumes the matching process as
if the pattern had failed to match. The body must not mutate the object being matched, otherwise
unpredictable behavior may result.

11.2 Patterns

identifier: (excluding the reserved names ?, ,, =, _, and, or, not, set!,get!, .. .,and . .k for
non-negative integers k) matches anything, and binds a variable of this name to the matching value in the
body.

_: matches anything, without binding any variables.

(), #t, #f, string, number, character, 's—expression: These constant patterns match themselves,
i.e., the corresponding value must be equal? to the pattern.

(pat-1 ... pat-n):matches a proper list of n elements that match pat-1 through pat-n.

(pat-1 ... pat-n . pat-n+1): matches a (possibly improper) list of at least n elements that ends in
something matching pat—n+1.

(pat-1 ... pat-n pat-n+1 ...):matches a proper list of n or more elements, where each element
of the tail matches pat-n+1. Each pattern variable in pat -n+1 is bound to a list of the matching values.
For example, the expression:

(match ' (let ([x 1][y 2]1) z)
[('"let ((binding wvalues) ...) exp) bodyl)

binds bindingtothelist ' (x y),valuestothelist\' (1 2),and exp to 'z in the body of the
mat ch-expression. For the special case where pat—n+1 is a pattern variable, the list bound to that variable
may share with the matched value.

(pat-1 ... pat-n pat-n+1 ___):This pattern means the same thing as the previous pattern.
(pat-1 ... pat-n pat-n+1 ..k): This pattern is similar to the previous pattern, but the tail must be
at least k elements long. The pattern keywords . . 0 and . . . are equivalent.

(pat-1 ... pat-n ~ pat-n+1 __k): This pattern means the same thing as the previous pattern.

(pat-1 ... pat-n):matches a vector of length n, whose elements match pat-1 through pat-n.
#(pat-1 ... pat-n pat-n+1 ...):matches a vector of length n or more, where each element

beyond n matches pat-n+1.

#(pat-1 ... pat-n pat-n+1 ..k):matches a vector of length n+k or more, where each element
beyond n matches pat-n+1.

11.2 Patterns 40

CHICKEN User's Manual - The User's Manual

($ struct pat-1 ... pat-n):matches a structure declared with define-record or
define-record-type.

(= field pat):isintended for selecting a field from a structure. field may be any expression; it is applied
to the value being matched, and the result of this application is matched against pat.

(and pat-1 ... pat-n):matches if all of the subpatterns match. At least one subpattern must be
present. This pattern is often used as (and x pat) to bind x to to the entire value that matches pat (cf.
as-patterns in ML or Haskell).

(or pat-1 ... pat-n):matches if any of the subpatterns match. At least one subpattern must be
present. All subpatterns must bind the same set of pattern variables.

(not pat-1 ... pat-n):matches if none of the subpatterns match. At least one subpattern must be
present. The subpatterns may not bind any pattern variables.

(? predicate pat-1 ... pat-n):In this pattern, predicate must be an expression evaluating to
a single argument function. This pattern matches if predicate applied to the corresponding value is true,
and the subpatterns pat-1 ... pat-n all match. The predicate should not have side effects, as the

code generated by the pattern matcher may invoke predicates repeatedly in any order. The predicate
expression is bound in the same scope as the match expression, i.e., free variables in predicate are not
bound by pattern variables.

(set! identifier): matches anything, and binds identifier to a procedure of one argument that
mutates the corresponding field of the matching value. This pattern must be nested within a pair, vector, box,
or structure pattern. For example, the expression:

(define x (list 1 (list 2 3)))
(match x [(_ (_ (set! setit))) (setit 4)1)

mutates the cadadr of xto4,sothat xis ' (1 (2 4)).

(get! identifier): matches anything, and binds identifier to a procedure of zero arguments that
accesses the corresponding field of the matching value. This pattern is the complement to set !. As with
set !, this pattern must be nested within a pair, vector, box, or structure pattern.

Quasipatterns: Quasiquote introduces a quasipattern, in which identifiers are considered to be symbolic
constants. Like Scheme's quasiquote for data, unquote (,) and unquote-splicing (,@) escape back to
normal patterns.

11.3 Match Failure

If no clause matches the value, the default action is to invoke the procedure (match—-error-procedure)
with the value that did not match. The default definition of (match—-error-procedure) calls error
with an appropriate message:

#,1> (match 1 (2 2))

Failed match:
Error: no matching clause for : 1

For most situations, this behavior is adequate, but it can be changed by altering the value of the parameter
match—-error—-control:

11.3 Match Failure 41

CHICKEN User's Manual - The User's Manual

{procedure} match-error-control
(match—-error—-control [MODE])

Selects a mode that specifies how match. . . macro forms are to be expanded. With no argument this
procedure returns the current mode. A single argument specifies the new mode that decides what should
happen if no match-clause applies. The following modes are supported:

Signal an error. This is the default.
1. :error

1. :mat%hgnal an error and output the offending form.

1 failOmits pair? tests when the consequence is to fail in car or cdr rather than to signal an error.

Non-matching expressions will either fail in car or cdr or return an unspecified value. This
mode applies to files compiled with the unsafe option or declaration.

When an error is signalled, the raised exception will be of kind (exn match).

unspecified

[procedure] match-error-procedure

(match—-error-procedure [PROCEDURE])

Sets or returns the procedure called upon a match error. The procedure takes one argument, the value which
failed to match. When the error control mode is # : mat ch a second argument, the source form of the match
expression is available.

11.4 Record Structures Pattern

The $ pattern handles native record structures and SRFI-9 records transparently. Currently it is required that
SRFI-9 record predicates are named exactly like the record type name, followed by a ? (question mark)
character.

11.5 Code Generation

Pattern matching macros are compiled into i £-expressions that decompose the value being matched with
standard Scheme procedures, and test the components with standard predicates. Rebinding or lexically
shadowing the names of any of these procedures will change the semantics of the mat ch macros. The names
that should not be rebound or shadowed are:

null? pair? number? string? symbol? boolean? char? procedure? vector? list?

equal?

car cdr cadr cdddr ...

vector—-length vector-ref
reverse length call/cc

Additionally, the code generated to match a structure pattern like ($ Foo pat-1 ... pat-n) refersto
the name Foo?. This name also should not be shadowed.

Previous: Non-standard macros and special forms

Next: Declarations

11.4 Record Structures Pattern 42

http://srfi.schemers.org/srfi-9/srfi-9.html
http://srfi.schemers.org/srfi-9/srfi-9.html

12 Declarations

12.1 declare

[syntax] (declare DECLSPEC ...)

Process declaration specifiers. Declarations always override any command-line settings. Declarations are
valid for the whole compilation-unit (source file), the position of the declaration in the source file can be
arbitrary. Declarations are ignored in the interpreter but not in code evaluated at compile-time (by

eval-when or in syntax extensions loaded via require—extension or require-for-syntax.
DECLSPEC may be any of the following:

12.2 always-bound

[declaration specifier] (always-bound SYMBOL ...)

Declares that the given variables are always bound and accesses to those have not to be checked.

12.3 block

[declaration specifier] (block)

Assume global variables are never redefined. This is the same as specifying the ~block option.

12.4 block-global

12.5 hide

[declaration specifier] (block-global SYMBOL ...)
[declaration specifier] (hide SYMBOL ...)

Declares that the toplevel bindings for SYMBOL . . . should not be accessible from code in other compilation
units or by eval. Access to toplevel bindings declared as block global is also more efficient.

12.6 bound-to-procedure

[declaration specifier] (bound-to-procedure SYMBOL ...)

Declares that the given identifiers are always bound to procedure values.

12.7 c-options

[declaration specifier] (c-options STRING ...)

12 Declarations 43

CHICKEN User's Manual - The User's Manual

Declares additional C/C++ compiler options that are to be passed to the subsequent compilation pass that
translates C to machine code. This declaration will only work if the source file is compiled with the csc
compiler driver.

12.8 check-c-syntax

[declaration specifier] (check-c-syntax)
[declaration specifier] (not check-c-syntax)

Enables or disables syntax-checking of embedded C/C++ code fragments. Checking C syntax is the default.

12.9 constant

[declaration specifier] (constant SYMBOL ...)

Declares the procedures with the names SYMBOL . . . as constant, that is, as not having any side effects.
This can help the compiler to remove non-side-effecting expressions.

12.10 export

[declaration specifier] (export SYMBOL ...)

The opposite of hide. All given identifiers will be exported and all toplevel variables not listed will be
hidden and not be accessible outside of this compilation unit.

12.11 emit-exports

[declaration specifier] (emit-exports STRING)

Write exported toplevel variables to file with name STRING.

12.12 emit-external-prototypes-first

[declaration specifier] (emit-external-prototypes-first)

Emit prototypes for callbacks defined with define-external before any other foreign declarations.
Equivalent to giving the —emit-external-prototypes—-first option to the compiler.

12.13 disable-interrupts

[declaration specifier] (disable-interrupts)
[declaration specifier] (not interrupts-enabled)

Disable timer-interrupts checks in the compiled program. Threads can not be preempted in main- or
library-units that contain this declaration.

12.7 c-options 44

CHICKEN User's Manual - The User's Manual

12.14 disable-warning

[declaration specifier] (disable-warning CLASS ...)

Disable warnings of type CLASS ... (equivalent to the —~disable-warning CLASS compiler option).

12.15 import
[declaration specifier] (import SYMBOL-OR-STRING ...)

Adds new imports to the list of externally available toplevel variables. Arguments to this declaration may be
either strings (designating . exports files, without the file-extension) or symbols which directly designate
imported variables.

12.16 inline

[declaration specifier
[declaration specifier
[declaration specifier
[declaration specifier

inline)
not inline)
inline IDENTIFIER ...)

]
]
]
] not inline IDENTIFIER ...)

If given without an identifier-list, inlining of known procedures is enabled (this is equivalent to the —inline
compiler option). When an identifier-list is given, then inlining is enabled only for the specified global
procedures. The negated forms (not inline) and (not inline IDENTIFIER) disable global
inlining, or inlining for the given global procedures only, respectively.

12.17 inline-limit

[declaration specifier] (inline-l1imit THRESHOLD)

Sets the maximum size of procedures which may potentially be inlined. The default threshold is 1 0.

12.18 interrupts-enabled

[declaration specifier] (interrupts-enabled)

Enable timer-interrupts checks in the compiled program (the default).

12.19 keep-shadowed-macros

[declaration specifier] (keep-shadowed-macros)

Normally, when a toplevel variable is assigned or defined that has the same name as a macro, the
macro-definition will be removed (in addition to showing a warning). This declaration will disable the
removal of the macro.

12.14 disable-warning 45

CHICKEN User's Manual - The User's Manual

12.20 lambda-lift

[declaration specifier] (lambda-1ift)

Enables lambda-lifting (equivalent to the —1ambda-11ift option).

12.21 link-options

[declaration specifier] (link-options STRING ...)
Declares additional linker compiler options that are to be passed to the subsequent compilation pass that links

the generated code into an executable or library. This declaration will only work if the source file is compiled
with the csc compiler driver.

12.22 no-argc-checks

[declaration specifier] (no-argc-checks)

Disables argument count checking.

12.23 no-bound-checks

[declaration specifier] (no-bound-checks)

Disables the bound-checking of toplevel bindings.

12.24 no-procedure-checks

[declaration specifier] (no-procedure-checks)

Disables checking of values in operator position for being of procedure type.

12.25 post-process

[declaration specifier] (post-process STRING ...)
Arranges for the shell commands STRING . .. to be invoked after the current file has been translated to C.
Any occurrences of the substring $Q@@ in the strings given for this declaration will be replaced by the

pathname of the currently compiled file, without the file-extension. This declaration will only work if the
source file is compiled with the csc compiler driver.

12.26 number-type

12.20 lambda-lift 46

CHICKEN User's Manual - The User's Manual

12.27 fixnum-arithmetic

[declaration specifier] ([number-type] TYPE)
[declaration specifier] (fixnum-arithmetic)

Declares that only numbers of the given type are used. TYPE may be fixnum or generic (which is the
default).

12.28 run-time-macros

[declaration specifier] (run-time-macros)

Equivalent to the compiler option of the same name - macros defined in the compiled code are also made
available at runtime.

12.29 standard-bindings

[declaration specifier] (standard-bindings SYMBOL ...)
[declaration specifier] (not standard-bindings SYMBOL ...)

Declares that all given standard procedures (or all if no symbols are specified) are never globally redefined. If
not is specified, then all but the given standard bindings are assumed to be never redefined.

12.30 extended-bindings

[declaration specifier] (extended-bindings SYMBOL ...)
[declaration specifier] (not extended-bindings SYMBOL ...)

Declares that all given non-standard and CHICKEN-specific procedures (or all if no symbols are specified)
are never globally redefined. If not is specified, then all but the given extended bindings are assumed to be
never redefined.

12.31 usual-integrations

[declaration specifier] (usual-integrations SYMBOL ...)
[declaration specifier] (not usual-integrations SYMBOL ...)

Declares that all given standard and extended bindings (or all if no symbols are specified) are never globally
redefined. If not is specified, then all but the given standard and extended bindings are assumed to be never

redefined. Note that this is the default behaviour, unless the -no-usual-integrations option has been
given.

12.32 unit

[declaration specifier] (unit SYMBOL)

Specify compilation unit-name (if this is a library)

12.27 fixnum-arithmetic 47

CHICKEN User's Manual - The User's Manual

12.33 unsafe

[declaration specifier] (unsafe)
[declaration specifier] (not safe)

Do not generate safety-checks. This is the same as specifying the —unsafe option. Also implies

(declare (no-bound-checks) (no-procedure-checks) (no-argc-checks))

12.34 unused

[declaration specifier] (unused SYMBOL ...)

Disables any warnings when the global variable SYMBOL is not defined but used, or defined but never used
and not exported.

12.35 uses

[declaration specifier] (uses SYMBOL ...)

Gives a list of used library-units. Before the toplevel-expressions of the main-module are executed, all used
units evaluate their toplevel-expressions in the order in which they appear in this declaration. If a library unit
A uses another unit B, then B's toplevel expressions are evaluated before A's. Furthermore, the used symbols
are registered as features during compile-time, so cond—expand knows about them.

Previous: Pattern matching

Next: Parameters

12.33 unsafe 48

13 Parameters

Certain behavior of the interpreter and compiled programs can be customized via '‘parameters', where a
parameter is a procedure of zero or one arguments. To retrieve the value of a parameter call the
parameter-procedure with zero arguments. To change the setting of the parameter, call the
parameter-procedure with the new value as argument:

define foo (make-parameter 123))

(

(foo) ==> 123
(foo 99)

(foo) ==> 99

Parameters are fully thread-local, each thread of execution owns a local copy of a parameters' value.

CHICKEN implements SRFI-39.

13.1 make-parameter

[procedure] (make-parameter VALUE [GUARD])

Returns a procedure that accepts zero or one argument. Invoking the procedure with zero arguments returns
VALUE. Invoking the procedure with one argument changes its value to the value of that argument
(subsequent invocations with zero parameters return the new value). GUARD should be a procedure of a single
argument. Any new values of the parameter (even the initial value) are passed to this procedure. The guard
procedure should check the value and/or convert it to an appropriate form.

13.2 case-sensitive

If true, then read reads symbols and identifiers in case-sensitive mode and uppercase characters in symbols
are printed escaped. Defaults to #t.

13.3 dynamic-load-libraries

A list of strings containing shared libraries that should be checked for explicitly loaded library units (this
facility is not available on all platforms). See 1load-1ibrary.

13.4 command-line-arguments

Contains the list of arguments passed to this program, with the name of the program and any runtime options
(all options starting with —:) removed.

13.5 current-read-table

A read-table object that holds read-procedures for special non-standard read-syntax (see
set-read-syntax! for more information).

13 Parameters 49

http://srfi.schemers.org/srfi-39/srfi-39.html

CHICKEN User's Manual - The User's Manual

13.6 exit-handler

A procedure of a single optional argument. When exit is called, then this procedure will be invoked with the
exit-code as argument. The default behavior is to terminate the program.

13.7 eval-handler

A procedure of one or two arguments. When eval is invoked, it calls the value of this parameter with the
same arguments. The default behavior is to evaluate the argument expression and to ignore the second
parameter.

13.8 force-finalizers

If true, force and execute all pending finalizers before exiting the program (either explicitly by exit or
implicitly when the last toplevel expression has been executed). Default is #t.

13.9 implicit-exit-handler

A procedure of no arguments. When the last toplevel expression of the program has executed, then the value
of this parameter is called. The default behaviour is to invoke all pending finalizers.

13.10 keyword-style

Enables alternative keyword syntax, where STYLE may be either # : pre fix (as in Common Lisp) or
#:suffix (as in DSSSL). Any other value disables the alternative syntaxes.

13.11 load-verbose

A boolean indicating whether loading of source files, compiled code (if available) and compiled libraries
should display a message.

13.12 program-name

The name of the currently executing program. This is equivalent to (car (argv)) for compiled programs
or the filename following the —script option in interpreted scripts.

13.13 repl-prompt

A procedure that should evaluate to a string that will be printed before reading interactive input from the user
in a read-eval-print loop. Defaults to (lambda () "#;N> ").

13.6 exit-handler 50

CHICKEN User's Manual - The User's Manual

13.14 reset-handler

A procedure of zero arguments that is called via reset. The default behavior in compiled code is to invoke
the value of (exit-handler). The default behavior in the interpreter is to abort the current computation
and to restart the read-eval-print loop.

Previous: Declarations

Next: Unit library

13.14 reset-handler 51

14 Unit library

This unit contains basic Scheme definitions. This unit is used by default, unless the program is compiled with
the —explicit-use option.

14.1 Arithmetic

14.1.1 add1/sub1

[procedure] (add1 N)
[procedure] (subl N)

Adds/subtracts 1 from N.

14.1.2 Binary integer operations

Binary integer operations. arithmetic—-shift shifts the argument N1 by N2 bits to the left. If N2 is
negative, than N1 is shifted to the right. These operations only accept exact integers or inexact integers in
word range (32 bit signed on 32-bit platforms, or 64 bit signed on 64-bit platforms).

[procedure] (bitwise-and N1 ...)

[procedure] (bitwise-ior N1 ...)

[procedure] (bitwise-xor N1 ...)

[procedure] (bitwise-not N)
[procedure] (arithmetic-shift N1 N2)

14.1.3 bit-set?

[procedure] (bit-set? N INDEX)

Returns #t if the bit at the position INDEX in the integer N is set, or # £ otherwise. The
rightmost/least-significant bit is bit 0.

14.1.4 fixnum?

[procedure] (fixnum? X)

Returns #t if X is a fixnum, or # £ otherwise.

14.1.5 Arithmetic fixnum operations

These procedures do not check their arguments, so non-fixnum parameters will result in incorrect results.
fxneg negates its argument.

On division by zero, £x/ and £xmod signal a condition of kind (exn arithmetic).

14 Unit library 52

CHICKEN User's Manual - The User's Manual

fxshl and £xshr perform arithmetic shift left and right, respectively.

[procedure] (fx+ N1 N2)
[procedure] (fx- N1 N2)
[procedure] (fx* N1 N2)
[procedure] (fx/ N1 N2)
[procedure] (fxmod N1 N2)
[procedure] (fxneg N)
[procedure] (fxmin N1 N2)
[procedure] (fxmax N1 N2)
[procedure] (fx= N1 N2)
[procedure] (fx> N1 N2)
[procedure] (fx< N1 N2)
[procedure] (fx>= N1 N2)
[procedure] (fx N1 N2)
[procedure] (fxand N1 N2)
[procedure] (fxior N1 N2)
[procedure] (fxxor N1 N2)
[procedure] (fxnot N)
[procedure] (fxshl N1 N2)
[procedure] (fxshr N1 N2)

14.1.6 Arithmetic floating-point operations

In safe mode, these procedures throw a type error with non-float arguments (except £ Lonum?, which returns
#£). In unsafe mode, these procedures do not check their arguments. A non-flonum argument in unsafe mode
can crash the system.

[procedure] (flonum? X)
[procedure] (fp+ X Y)
[procedure] (fp- X Y)
[procedure] (fp* X Y)
[procedure] (fp/ X Y)
[procedure] (fpneg X)
[procedure] (fpmin X Y)
[procedure] (fpmax X Y)
[procedure] (fp= X Y)
[procedure] (fp> X Y)
[procedure] (fp< X Y)
[procedure] (fp>= X Y)
[procedure] (fp X Y)

14.1.7 sighum

[procedure] (signum N)

Returns 1 if N is positive, —1 if N is negative or 0 if N is zero. signum is exactness preserving.

14.1.5 Arithmetic fixnum operations 53

CHICKEN User's Manual - The User's Manual
14.1.8 finite?

[procedure] (finite? N)

Returns # £ if N is negative or positive infinity, and #t otherwise.

14.1.9 flonum-print-precision
[procedure] (flonum-print-precision [PRECISION])
Returns the existing number of digits after the decimal place used in printing a £1onum.

The optional non-negative—-fixnum PRECISION sets the current print precision.

14.2 File Input/Output

14.2.1 current-output-port

[procedure] (current-output-port [PORT])
Returns default output port. If PORT is given, then that port is selected as the new current output port.

Note that the default output port is not buffered. Use [[http://galinha.ucpel.tche.br/Unit posix#Setting the file
buffering modelset -buffering-mode!]] if you need a different behavior.

14.2.2 current-error-port

[procedure] (current-error-port [PORT])

Returns default error output port. If PORT is given, then that port is selected as the new current error output
port.

Note that the default error output port is not buffered. Use [[http://galinha.ucpel.tche.br/Unit posix#Setting the
file buffering modelset -buffering-mode!]] if you need a different behavior.

14.2.3 flush-output

[procedure] (flush-output [PORT])

Write buffered output to the given output-port. PORT defaults to the value of (current-output-port).

14.2.4 port-name

[procedure] (port-name [PORT])

Fetch filename from PORT. This returns the filename that was used to open this file. Returns a special tag
string, enclosed into parentheses for non-file ports. PORT defaults to the value of

14.1.8 finite? 54

http://galinha.ucpel.tche.br/Unit
http://galinha.ucpel.tche.br/Unit

CHICKEN User's Manual - The User's Manual

(current-input-port).

14.2.5 port-position
[procedure] (port-position [PORT])
Returns the current position of PORT as two values: row and column number. If the port does not support

such an operation an error is signaled. This procedure is currently only available for input ports. PORT
defaults to the value of (current-input-port).

14.2.6 set-port-name!
[procedure] (set-port-name! PORT STRING)

Sets the name of PORT to STRING.

14.3 Files

14.3.1 delete-file

[procedure] (delete-file STRING)

Deletes the file with the pathname STRING. If the file does not exist, an error is signaled.

14.3.2 file-exists?

[procedure] (file-exists? STRING)

Returns STRING if a file with the given pathname exists, or # f otherwise.

14.3.3 rename-file

[procedure] (rename-file OLD NEW)

Renames the file or directory with the pathname OLD to NEW. If the operation does not succeed, an error is
signaled.

14.4 String ports

14.4.1 get-output-string
[procedure] (get-output-string PORT)

Returns accumulated output of a port created with (open—-output-string).

14.2.4 port-name 55

CHICKEN User's Manual - The User's Manual
14.4.2 open-input-string
[procedure] (open-input-string STRING)

Returns a port for reading from STRING.

14.4.3 open-output-string

[procedure] (open-output-string)

Returns a port for accumulating output in a string.

14.5 Feature identifiers

CHICKEN maintains a global list of features naming functionality available in the current system.
Additionally the cond—expand form accesses this feature list to infer what features are provided.
Predefined features are chicken, and the SRFIs (Scheme Request For Implementation) provided by the base
system: srfi-23, srfi-30, srfi-39.Ifthe eval unitis used (the default), the features srfi-0,
srfi-2, srfi-6, srfi-8, srfi-9and srfi-10 are defined. When compiling code (during
compile-time) the feature compiling is registered. When evaluating code in the interpreter (csi), the feature
csi is registered.

14.5.1 features

[procedure] (features)

Returns a list of all registered features that will be accepted as valid feature-identifiers by cond-expand.

14.5.2 feature?

[procedure] (feature? ID ...)

Returns #t if all features with the given feature-identifiers ID . .. are registered.

14.5.3 register-feature!

[procedure] (register-feature! FEATURE ...)
Register one or more features that will be accepted as valid feature-identifiers by cond-expand. FEATURE

. may be a keyword, string or symbol.

14.5.4 unregister-feature!

[procedure] (unregister-feature! FEATURE ...)

Unregisters the specified feature-identifiers. FEATURE . . . may be a keyword, string or symbol.

14.4.2 open-input-string 56

CHICKEN User's Manual - The User's Manual

14.6 Keywords

Keywords are special symbols prefixed with # : that evaluate to themselves. Procedures can use keywords to
accept optional named parameters in addition to normal required parameters. Assignment to and bindings of
keyword symbols is not allowed. The parameter keyword-style and the compiler/interpreter option
-keyword-style can be used to allow an additional keyword syntax, either compatible to Common LISP,
or to DSSSL.

14.6.1 get-keyword

[procedure] (get-keyword KEYWORD ARGLIST [THUNK])

Returns the argument from ARGLIST specified under the keyword KEYWORD. If the keyword is not found,
then the zero-argument procedure THUNK is invoked and the result value is returned. If THUNK is not given,

#f is returned.

(define (increase x . args)

(+ x (get-keyword #:amount args (lambda () 1))))
(increase 123) ==> 124
(increase 123 #:amount 10) ==> 133

Note: the KEYWORD may actually be any kind of object.

14.6.2 keyword?

[procedure] (keyword? X)

Returns #t if X is a keyword symbol, or # f otherwise.

14.6.3 keyword string
[procedure] (keyword->string KEYWORD)

Transforms KEYWORD into a string.

14.6.4 string keyword

[procedure] (string->keyword STRING)

Returns a keyword with the name STRING.

14.7 Exceptions

CHICKEN implements the (currently withdrawn) SRFI-12 exception system. For more information, see the
SRFI-12 document.

14.6 Keywords 57

http://srfi.schemers.org/srfi-12/srfi-12.html
http://srfi.schemers.org/srfi-12/srfi-12.html

CHICKEN User's Manual - The User's Manual
14.7.1 condition-case
[syntax] (condition-case EXPRESSION CLAUSE ...)

Evaluates EXPRESSTION and handles any exceptions that are covered by CLAUSE .. ., where CLAUSE
should be of the following form:

CLAUSE = ([VARIABLE] (KIND ...) BODY ...)
If provided, VARIABLE will be bound to the signaled exception object. BODY . . . is executed when the
exception is a property- or composite condition with the kinds given KIND . .. (unevaluated). If no clause

applies, the exception is re-signaled in the same dynamic context as the condition-case form.

(define (check thunk)
(condition—-case (thunk)

[(exn file) (print)]

[(exn) (print)]

[var () (print)1))
(check (lambda () (open-input-file))) ; —> "file error"
(check (lambda () some-unbound-variable)) ; —> "othererror"
(check (lambda () (signal 99))) ; —> "something else"

(condition-case some-unbound-variable
[(exn file) (print)yl) ; —> signals error

14.7.2 breakpoint

[procedure] (breakpoint [NAME])
Programmatically triggers a breakpoint (similar to the , br top-level csi command).

All error-conditions signaled by the system are of kind exn. The following composite conditions are
additionally defined:

(exn arity)

Signaled when a procedure is called with the wrong number of arguments.
(exn type)

Signaled on type-mismatch errors, for example when an argument of the wrong type is passed to a built-in
procedure.

(exn arithmetic)

Signaled on arithmetic errors, like division by zero.

(exn 1/0)

Signaled on input/output errors.

(exn i1/0 file)

Signaled on file-related errors.

(exn 1/0 net)

Signaled on network errors.

14.7.1 condition-case 58

CHICKEN User's Manual - The User's Manual

(exn bounds)

Signaled on errors caused by accessing non-existent elements of a collection.

(exn runtime)

Signaled on low-level runtime-system error-situations.

(exn runtime limit)

Signaled when an internal limit is exceeded (like running out of memory).

(exn match)

Signaled on errors raised by failed matches (see the section on match).

(exn syntax)

Signaled on syntax errors.

(exn breakpoint)

Signaled when a breakpoint is reached.
Notes:

¢ All error-exceptions (of the kind exn) are non-continuable.

¢ Error-exceptions of the exn kind have additional argument s and 1ocation properties that
contain the arguments passed to the exception-handler and the name of the procedure where the error
occurred (if available).

¢ When the posix unit is available and used, then a user-interrupt (signal/int) signals an
exception of the kind user—interrupt.

¢ the procedure condition-property—accessor accepts an optional third argument. If the
condition does not have a value for the desired property and if the optional argument is given, no error
is signaled and the accessor returns the third argument.

¢ In composite conditions all properties are currently collected in a single property-list, so in the case
that to conditions have the same named property, only one will be visible.

14.8 Environment information and system interface

14.8.1 argv

[procedure] (argv)
Return a list of all supplied command-line arguments. The first item in the list is a string containing the name
of the executing program. The other items are the arguments passed to the application. This list is freshly

created on every invocation of (argv) . It depends on the host-shell whether arguments are expanded
('globbed') or not.

14.8.2 exit

[procedure] (exit [CODE])
Exit the running process and return exit-code, which defaults to O (Invokes exit-handler).

Note that pending dynamic-wind thunks are not invoked when exiting your program in this way.

14.7.2 breakpoint 59

CHICKEN User's Manual - The User's Manual
14.8.3 build-platform

[procedure] (build-platform)

Returns a symbol specifying the toolset which has been used for building the executing system, which is one
of the following:

cygwin
mingw32
gnu
intel
unknown

14.8.4 chicken-version

[procedure] (chicken-version [FULL])

Returns a string containing the version number of the CHICKEN runtime system. If the optional argument
FULL is given and true, then a full version string is returned.

14.8.5 errno

[procedure] (errno)

Returns the error code of the last system call.

14.8.6 getenv

[procedure] (getenv STRING)

Returns the value of the environment variable STRING or # £ if that variable is not defined.

14.8.7 machine-byte-order

[procedure] (machine-byte-order)

Returns the symbol 1ittle—-endian or big-endian, depending on the machine's byte-order.

14.8.8 machine-type

[procedure] (machine-type)

Returns a symbol specifying the processor on which this process is currently running, which is one of the
following:

alpha

mips

hppa
ultrasparc
sparc

ppc

14.8.3 build-platform 60

CHICKEN User's Manual - The User's Manual

ppc64
ia64
%86
x86-64
unknown

14.8.9 on-exit

[procedure] (on-exit THUNK)

Schedules the zero-argument procedures THUNK to be executed before the process exits, either explicitly via
exit or implicitly after execution of the last top-level form. Note that finalizers for unreferenced finalized
data are run before exit procedures.

14.8.10 software-type

[procedure] (software-type)

Returns a symbol specifying the operating system on which this process is currently running, which is one of
the following:

windows
unix
macos
ecos
unknown

14.8.11 software-version

[procedure] (software-version)

Returns a symbol specifying the operating system version on which this process is currently running, which is
one of the following:

linux
freebsd
netbsd
openbsd
macosx
hpux
solaris
sunos
unknown

14.8.12 c-runtime

[procedure] (c-runtime)
Returns a symbol that designates what kind of C runtime library has been linked with this version of the

Chicken libraries. Possible return values are static, dynamic or unknown. On systems not compiled
with the Microsoft C compiler, c-runt ime always returns unknown.

14.8.8 machine-type 61

CHICKEN User's Manual - The User's Manual

14.8.13 system

[procedure] (system STRING)

Execute shell command. The functionality offered by this procedure depends on the capabilities of the host

shell. If the forking of a subprocess failed, an exception is raised. Otherwise the return status of the subprocess
is returned unaltered.

14.9 Execution time

14.9.1 cpu-time
[procedure] (cpu-time)
Returns the used CPU time of the current process in milliseconds as two values: the time spent in user code,

and the time spent in system code. On platforms where user and system time can not be differentiated, system
time will be always be 0.

14.9.2 current-milliseconds

[procedure] (current-milliseconds)

Returns the number of milliseconds since process- or machine startup.

14.9.3 current-seconds

[procedure] (current-seconds)

Returns the number of seconds since midnight, Jan. 1, 1970.

14.9.4 current-gc-milliseconds

[procedure] (current-gc-milliseconds)

Returns the number of milliseconds spent in major garbage collections since the last call of
current-gc-milliseconds and returns an exact integer.

14.10 Interrupts and error-handling

14.10.1 enable-warnings

[procedure] (enable-warnings [BOOL]J)
Enables or disables warnings, depending on wether BOOL is true or false. If called with no arguments, this

procedure returns #t if warnings are currently enabled, or # £ otherwise. Note that this is not a parameter. The
current state (whether warnings are enabled or disabled) is global and not thread-local.

14.8.13 system 62

CHICKEN User's Manual - The User's Manual
14.10.2 error

[procedure] (error [LOCATION] [STRING] EXP ...)
Prints error message, writes all extra arguments to the value of (current-error-port) and invokes the

current exception-handler. This conforms to SRFI-23. If LOCATION is given and a symbol, it specifies the
location (the name of the procedure) where the error occurred.

14.10.3 get-call-chain

[procedure] (get-call-chain [START [THREAD]])

Returns a list with the call history. Backtrace information is only generated in code compiled without
-no-trace and evaluated code. If the optional argument START is given, the backtrace starts at this offset,

i.e. when START is 1, the next to last trace-entry is printed, and so on. If the optional argument THREAD is
given, then the call-chain will only be constructed for calls performed by this thread.

14.10.4 print-call-chain
[procedure] (print-call-chain [PORT [START [THREAD]]])

Prints a backtrace of the procedure call history to PORT, which defaults to (current-output-port).

14.10.5 print-error-message

[procedure] (print-error-message EXN [PORT [STRING]])
Prints an appropriate error message to PORT (which defaults to the value of (current-output-port)

for the object EXN. EXN may be a condition, a string or any other object. If the optional argument STRING is
given, it is printed before the error-message. STRING defaults to "Error:".

14.10.6 procedure-information

[procedure] (procedure-information PROC)

Returns an s-expression with debug information for the procedure PROC, or # £, if PROC has no associated
debug information.

14.10.7 reset

[procedure] (reset)

Reset program (Invokes reset-handler).

14.10.8 warning

[procedure] (warning STRING EXP ...)

14.10.2 error 63

http://srfi.schemers.org/srfi-23/srfi-23.html

CHICKEN User's Manual - The User's Manual

Displays a warning message (if warnings are enabled with enable—-warnings) and continues execution.

14.10.9 singlestep

[procedure] (singlestep THUNK)

Executes the code in the zero-procedure THUNK in single-stepping mode.

14.11 Garbage collection

14.11.1 gc

[procedure] (gc [FLAG])
Invokes a garbage-collection and returns the number of free bytes in the heap. The flag specifies whether a

minor (# £) or major (#t) GC is to be triggered. If no argument is given, #t is assumed. An explicit #t
argument will cause all pending finalizers to be executed.

14.11.2 memory-statistics

[procedure] (memory-statistics)
Performs a major garbage collection and returns a three element vector containing the total heap size in bytes,

the number of bytes currently used and the size of the nursery (the first heap generation). Note that the actual
heap is actually twice the size given in the heap size, because CHICKEN uses a copying semi-space collector.

14.11.3 set-finalizer!

[procedure] (set-finalizer! X PROC)
Registers a procedure of one argument PROC, that will be called as soon as the non-immediate data object X is

about to be garbage-collected (with that object as its argument). Note that the finalizer will not be called while
interrupts are disabled. This procedure returns X.

14.11.4 set-gc-report!

[procedure] (set-gc-report! FLAG)

Print statistics after every GC, depending on FLAG. A value of #t shows statistics after every major GC. A
true value different from #t shows statistics after every minor GC. # £ switches statistics off.

14.12 Other control structures

14.10.8 warning 64

CHICKEN User's Manual - The User's Manual

14.12.1 promise?

[procedure] (promise? X)

Returns #t if X is a promise returned by delay, or # £ otherwise.

14.13 String utilities

14.13.1 reverse-list string

[procedure] (reverse-list->string LIST)

Returns a string with the characters in LIST in reverse order. This is equivalentto (1ist->string
(reverse LIST)), but much more efficient.

14.14 Generating uninterned symbols

14.14.1 gensym
[procedure] (gensym [STRING-OR-SYMBOL])

Returns a newly created uninterned symbol. If an argument is provided, the new symbol is prefixed with that
argument.

14.14.2 string uninterned-symbol

[procedure] (string->uninterned-symbol STRING)

Returns a newly created, unique symbol with the name STRING.

14.15 Standard Input/Output

14.15.1 port?

[procedure] (port? X)

Returns #t if X is a port object or # £ otherwise.

14.15.2 print

[procedure] (print [EXP1 ...])

Outputs the optional arguments EXP1 ... using display and writes a newline character to the port that is
the value of (current-output-port).Returns (void).

14.12.1 promise? 65

CHICKEN User's Manual - The User's Manual
14.15.3 print*
[procedure] (print* [EXP1 ...])

Similar to print, but does not output a terminating newline character and performs a flush-output after
writing its arguments.

14.16 User-defined named characters

14.16.1 char-name
[procedure] (char-name SYMBOL-OR-CHAR [CHAR])

This procedure can be used to inquire about character names or to define new ones. With a single argument
the behavior is as follows: If SYMBOL—-OR-CHAR is a symbol, then char—name returns the character with
this name, or # £ if no character is defined under this name. If SYMBOL—-OR—-CHAR is a character, then the
name of the character is returned as a symbol, or # £ if the character has no associated name.

If the optional argument CHAR is provided, then SYMBOL-OR~-CHAR should be a symbol that will be the new
name of the given character. If multiple names designate the same character, then the write will use the
character name that was defined last.

(char-name 'space) ==> #\space
(char—-name #\space) ==> space
(char—-name 'bell) ==> #f
(char-name (integer->char 7)) ==> #f
(char-name 'bell (integer->char 7))

(char—-name 'bell) ==> #\bell
(char->integer (char-name 'bell)) ==> 7

14.17 Blobs

"blobs" are collections of unstructured bytes. You can't do much with them, but allow conversion to and from
SRFI-4 number vectors.

14.17.1 make-blob

[procedure] (make-blob SIZE)

Returns a blob object of SIZE bytes, aligned on an 8-byte boundary, uninitialized.

14.17.2 blob?

[procedure] (blob? X)

Returns #t if X is a blob object, or # £ otherwise.

14.15.3 print* 66

CHICKEN User's Manual - The User's Manual
14.17.3 blob-size
[procedure] (blob-size BLOB)

Returns the number of bytes in BLOB.

14.17.4 blob string

[procedure] (blob->string BLOB)

Returns a string with the contents of BLOB.

14.17.5 string blob

[procedure] (string->blob STRING)

Returns a blob with the contents of STRING.

14.17.6 blob="?
[procedure] (blob=? BLOB1 BLOB2)

Returns #t if the two argument blobs are of the same size and have the same content.

14.18 Vectors

14.18.1 vector-copy!
[procedure] (vector-copy! VECTOR1 VECTOR2 [COUNT])

Copies contents of VECTORL into VECTOR?2. If the argument COUNT is given, it specifies the maximal
number of elements to be copied. If not given, the minimum of the lengths of the argument vectors is copied.

Exceptions: (exn bounds)

14.18.2 vector-resize
[procedure] (vector-resize VECTOR N [INIT])
Creates and returns a new vector with the contents of VECTOR and length N. If N is greater than the original

length of VECTOR, then all additional items are initialized to INIT. If INIT is not specified, the contents are
initialized to some unspecified value.

14.17.3 blob-size 67

CHICKEN User's Manual - The User's Manual

14.19 The unspecified value

14.19.1 void

[procedure] (void)

Returns an unspecified value.

14.20 Continuations

14.20.1 call/cc
[procedure] (call/cc PROCEDURE)

An alias for call-with-current—-continuation.

14.20.2 continuation-capture

[procedure] (continuation-capture PROCEDURE)

Creates a continuation object representing the current continuation and tail-calls PROCEDURE with this
continuation as the single argument.

More information about this continuation API can be found in the paper

http://repository.readscheme.org/ftp/papers/sw2001/feeley.pdf A Better API for first class Continuations by
Marc Feeley.

14.20.3 continuation?

[procedure] (continuation? X)
Returns #t if X is a continuation object, or # £ otherwise. Please note that this applies only to continuations

created by the Continuation API, but not by call/cc, i.e.: (call-with-current-continuation
continuation?) returns #f, whereas (continuation-capture continuation?) returns #t.

14.20.4 continuation-graft

[procedure] (continuation-graft CONT THUNK)

Calls the procedure THUNK with no arguments and the implicit continuation CONT.

14.20.5 continuation-return

[procedure] (continuation-return CONT VALUE ...)

Returns the value(s) to the continuation CONT. continuation-return could be implemented like this:

14.19 The unspecified value

http://repository.readscheme.org/ftp/papers/sw2001/feeley.pdf

CHICKEN User's Manual - The User's Manual

(define (continuation-return k . vals)
(continuation-graft
k
(lambda () (apply values vals))))

14.21 Setters

SRFI-17 is fully implemented. For more information see: SRFI-17.

14.21.1 setter

[procedure] (setter PROCEDURE)

Returns the setter-procedure of PROCEDURE, or signals an error if PROCEDURE has no associated
setter-procedure.

Note that (set! (setter PROC) ...) foraprocedure that has no associated setter procedure yet is a
very slow operation (the old procedure is replaced by a modified copy, which involves a garbage collection).

14.21.2 getter-with-setter

[procedure] (getter-with-setter GETTER SETTER)

Returns a copy of the procedure GETTER with the associated setter procedure SETTER. Contrary to the SRFI
specification, the setter of the returned procedure may be changed.

14.22 Reader extensions

14.22.1 define-reader-ctor
[procedure] (define-reader-ctor SYMBOL PROC)

Define new read-time constructor for #, read syntax. For further information, see the documentation for
SRFI-10.

14.22.2 set-read-syntax!
[procedure] (set-read-syntax! CHAR-OR-SYMBOL PROC)

When the reader encounters the non-whitespace character CHAR while reading an expression from a given
port, then the procedure PROC will be called with that port as its argument. The procedure should return a
value that will be returned to the reader:

; A simple RGB color syntax:

(set-read-syntax! #\%
(lambda (port)
(apply vector
(map (cut string->number <> 16)

14.20.5 continuation-return 69

http://srfi.schemers.org/srfi-17/srfi-17.html
http://srfi.schemers.org/srfi-10/srfi-10.html

CHICKEN User's Manual - The User's Manual
(string-chop (read-string 6 port) 2)))))

(with—-input-from-string read)
; ==> (1 2 #(240 240 240) 3)

If CHAR-OR-SYMBOL is a symbol, then a so-called read-mark handler is defined. In that case the handler
procedure will be called when a character-sequence of the form

#1SYMBOL
1s encountered.

You can undo special handling of read-syntax by passing #f as the second argument (if the syntax was
previously defined via set-read-syntax!).

Note that all of CHICKEN's special non-standard read-syntax is handled directly by the reader. To disable
built-in read-syntax, define a handler that triggers an error (for example).

14.22.3 set-sharp-read-syntax!
[procedure] (set-sharp-read-syntax! CHAR-OR-SYMBOL PROC)

Similar to set-read-syntax!, but allows defining new #<CHAR> ... reader syntax. If the first
argument is a symbol, then this procedure is equivalent to set-read-syntax!.

14.22.4 set-parameterized-read-syntax!

[procedure] (set-parameterized-read-syntax! CHAR-OR-SYMBOL PROC)

Similar to set—-sharp-read-syntax!, but intended for defining reader syntax of the form
#<NUMBER><CHAR> The handler procedure PROC will be called with two arguments: the input port

and the number preceding the dispatching character. If the first argument is a symbol, then this procedure is
equivalent to set-read-syntax!.

14.22.5 copy-read-table
[procedure] (copy-read-table READ-TABLE)

Returns a copy of the given read-table. You can access the currently active read-table with
(current-read-table).

14.23 Property lists

As in other Lisp dialects, CHICKEN supports "property lists" associated with symbols. Properties are
accessible via a key that can be any kind of value but which will be compared using eq?.

14.23.1 get

[procedure] (get SYMBOL PROPERTY [DEFAULT])

14.22.2 set-read-syntax! 70

CHICKEN User's Manual - The User's Manual

Returns the value stored under the key PROPERTY in the property list of SYMBOL. If no such property is
stored, returns DEFAULT. The DEFAULT is optional and defaults to #£.

14.23.2 put!

[procedure] (put! SYMBOL PROPERTY VALUE)
[setter] (set! (get SYMBOL PROPERTY) VALUE)

Stores VALUE under the key PROPERTY in the property list of SYMBOL replacing any previously stored
value.

14.23.3 remprop!
[procedure] (remprop! SYMBOL PROPERTY)

Deletes the first property matching the key PROPERTY in the property list of SYMBOL. Returns #t when a
deletion performed, and # £ otherwise.

14.23.4 symbol-plist

[procedure] (symbol-plist SYMBOL)
[setter] (set! (symbol-plist SYMBOL) LST)

Returns the property list of SYMBOL or sets it.

14.23.5 get-properties

[procedure] (get-properties SYMBOL PROPERTIES)
Searches the property list of SYMBOL for the first property with a key in the list PROPERTIES. Returns 3
values: the matching property key, value, and the tail of property list after the matching property. When no
match found all values are #£.
PROPERTIES may also be an atom, in which case it is treated as a list of one element.

Previous: Parameters

Next: Unit eval

14.23.1 get

71

15 Unit eval

This unit has support for evaluation and macro-handling. This unit is used by default, unless the program is
compiled with the —~explicit-use option.

15.1 Loading code

15.1.1 load
[procedure] (load FILE [EVALPROC])

Loads and evaluates expressions from the given source file, which may be either a string or an input port.
Each expression read is passed to EVALPROC (which defaults to eval). On platforms that support it
(currently native Windows, Linux ELF and Solaris), 1oad can be used to load compiled programs:

% cat x.scm

(define (hello) (print "Hello!"))
% CcsCc —-s xX.scm

% csi —-g

#;1> (load "x.so")

; loading x.so ...

#;2> (hello)

Hello!

#;3>

The second argument to 1 oad is ignored when loading compiled code. If source code is loaded from a port,
then that port is closed after all expressions have been read.

Compiled code can be re-loaded, but care has to be taken, if code from the replaced dynamically loaded
module is still executing (i.e. if an active continuation refers to compiled code in the old module).

Support for reloading compiled code dynamically is still experimental.

15.1.2 load-relative
[procedure] (load-relative FILE [EVALPROC])

Similar to 1oad, but loads FILE relative to the path of the currently loaded file.

15.1.3 load-noisily

[procedure] (load-noisily FILE #!key EVALUATOR TIME PRINTER)

As load but the result(s) of each evaluated toplevel-expression is written to standard output. If EVALUATOR
is given and not # £, then each expression is evaluated by calling this argument with the read expression as
argument. If TIME is given and not false, then the execution time of each expression is shown (as with the

t ime macro). If PRINTER is given and not false, then each expression is printed before evaluation by
applying the expression to the value of this argument, which should be a one-argument procedure.

See also the load-verbose parameter.

15 Unit eval 72

http://chicken.wiki.br/Parameters#load-verbose

CHICKEN User's Manual - The User's Manual
15.1.4 load-library

[procedure] (load-library UNIT [LIBRARYFILE])

On platforms that support dynamic loading, 1oad-1ibrary loads the compiled library unit UNIT (which
should be a symbol). If the string LIBRARYFILE is given, then the given shared library will be loaded and
the toplevel code of the contained unit will be executed. If no LIBRARYFILE argument is given, then the
following libraries are checked for the required unit:

¢ a file named <UNIT>. so
e the files given in the parameter dynamic—-load-libraries

If the unit is not found, an error is signaled. When the library unit can be successfully loaded, a
feature-identifier named UNIT is registered. If the feature is already registered before loading, the
load-library does nothing.

15.1.5 set-dynamic-load-mode!

[procedure] (set-dynamic-load-mode! MODELIST)

On systems that support dynamic loading of compiled code via the d1open (3) interface (for example Linux
and Solaris), some options can be specified to fine-tune the behaviour of the dynamic linker. MODE should be
a list of symbols (or a single symbol) taken from the following set:

local
If 1ocal is given, then any C/C++ symbols defined in the dynamically loaded file are not available
for subsequently loaded files and libraries. Use this if you have linked foreign code into your
dynamically loadable file and if you don't want to export them (for example because you want to load
another file that defines the same symbols).
global
The default is global, which means all C/C++ symbols are available to code loaded at a later stage.
now
If now is specified, all symbols are resolved immediately.
lazy
Unresolved symbols are resolved as code from the file is executed. This is the default.

Note that this procedure does not control the way Scheme variables are handled - this facility is mainly of
interest when accessing foreign code.

15.2 Read-eval-print loop

15.2.1 repl

[procedure] (repl)
Start a new read-eval-print loop. Sets the reset-handler so that any invocation of reset restarts the

read-eval-print loop. Also changes the current exception-handler to display a message, write any arguments to
the value of (current—-error-port) and reset.

15.1.4 load-library 73

CHICKEN User's Manual - The User's Manual
15.3 Macros

15.3.1 get-line-number

[procedure] (get-line-number EXPR)
If EXPR is a pair with the car being a symbol, and line-number information is available for this expression,

then this procedure returns the associated line number. If line-number information is not available, then # £ is
returned. Note that line-number information for expressions is only available in the compiler.

15.3.2 macro?

[procedure] (macro? SYMBOL)

Returns #t if there exists a macro-definition for SYMBOL.

15.3.3 macroexpand

[procedure] (macroexpand X)

If X is a macro-form, expand the macro (and repeat expansion until expression is a non-macro form). Returns
the resulting expression.

15.3.4 macroexpand-1

[procedure] (macroexpand-1 X)

If X is a macro-form, expand the macro. Returns the resulting expression.

15.3.5 undefine-macro!

[procedure] (undefine-macro! SYMBOL)

Remove the current macro-definition of the macro named SYMBOL.

15.3.6 syntax-error
[procedure] (syntax-error [LOCATION] MESSAGE ARGUMENT ...)

Signals an exception of the kind (exn syntax). Otherwise identical to error.

15.4 Loading extension libraries

This functionality is only available on platforms that support dynamic loading of compiled code. Currently
Linux, BSD, Solaris, Windows (with Cygwin) and HP/UX are supported.

15.3 Macros 74

CHICKEN User's Manual - The User's Manual

15.4.1 repository-path

[parameter] repository-path

Contains a string naming the path to the extension repository, which defaults to either the value of the

environment variable CHICKEN_REPOSITORY or the default library path (usually
/usr/local/lib/chicken on UNIX systems).

15.4.2 extension-information

[procedure] (extension-information ID)

If an extension with the name ID is installed and if it has a setup-information list registered in the extension
repository, then the info-list is returned. Otherwise extension—-information returns #£f.

15.4.3 provide

[procedure] (provide ID ...)

Registers the extension IDs ID . .. asloaded. This is mainly intended to provide aliases for certain
extension identifiers.

15.4.4 provided?

[procedure] (provided? ID ...)

Returns #t if the extension with the IDs ID ... are currently loaded, or #f otherwise.

15.4.5 require

[procedure] (require ID ...)
[procedure] (require-for-syntax ID ...)

If the extension library ID is not already loaded into the system, then require will lookup the location of
the shared extension library and load it. If ID names a library-unit of the base system, then it is loaded via
load-library. If no extension library is available for the given ID, then an attempt is made to load the file

ID.soor ID. scm (in that order) from one of the following locations:

e the current include path, which defaults to the pathnames given in CHICKEN_INCLUDE_PATH.
¢ the current directory

ID should be a string or a symbol. The difference between require and require-for-syntax is the
the latter loads the extension library at compile-time (the argument is still evaluated), while the former loads it
at run-time.

15.4.6 set-extension-specifier!

[procedure] (set-extension-specifier! SYMBOL PROC)

15.4.1 repository-path 75

CHICKEN User's Manual - The User's Manual

Registers the handler-procedure PROC as a extension-specifier with the name SYMBOL. This facility allows
extending the set of valid extension specifiers to be used with require-extension. When
register—extension is called with an extension specifier of the form (SPEC ...) and SPEC has
been registered with set—extension-specifier!, then PROC will be called with two arguments: the
specifier and the previously installed handler (or #£ if no such handler was defined). The handler should
return a new specifier that will be processed recursively. If the handler returns a vector, then each element of
the vector will be processed recursively. Alternatively the handler may return a string which specifies a file to
be loaded:

(eval-when (compile eval)
(set—-extension-specifier!
'my-package
(lambda (spec old)
(make-pathname my-package-directory (->string (cadr spec))))))

(require—-extension (my-package stuff)) ; ——> expands into '(load "my-package-dir/stuff")

Note that the handler has to be registered at compile time, if it is to be visible in compiled code.

15.5 System information

15.5.1 chicken-home

[procedure] (chicken-home)
Returns a string given the installation directory (usually /usr/local/share/chicken on UNIX-like

systems). As a last option, if the environment variable CHICKEN_PREF IX is set, then chicken—home will
return SCHICKEN_PREFIX/share.

15.6 Eval

15.6.1 eval

[procedure] (eval EXP [ENVIRONMENT])

Evaluates EXP and returns the result of the evaluation. The second argument is optional and defaults to the
value of (interaction-environment).

Previous: Unit library

Next: Unit extras

15.4.6 set-extension-specifier! 76

16 Unit extras

This unit contains a collection of useful utility definitions. This unit is used by default, unless the program is
compiled with the —~explicit-use option.

16.1 Lists

16.1.1 alist-ref

[procedure] (alist-ref KEY ALIST [TEST [DEFAULT]])

Looks up KEY in ALIST using TEST as the comparison function (or eqv ? if no test was given) and returns
the cdr of the found pair, or DEFAULT (which defaults to #).

16.1.2 alist-update!

[procedure] (alist-update! KEY VALUE ALIST [TEST])
If the list ALT ST contains a pair of the form (KEY . X), then this procedure replaces X with VALUE and
returns ALIST. If ALTIST contains no such item, then alist—-update! returns ((KEY . VALUE)

ALIST). The optional argument TEST specifies the comparison procedure to search a matching pair in
ALIST and defaults to eqv?.

16.1.3 atom?

[procedure] (atom? X)

Returns #t if X is not a pair. This is identical to not —pair? from Unit srfi-1 but kept for historical reasons.

16.1.4 rassoc
[procedure] (rassoc KEY LIST [TEST])

Similar to assoc, but compares KEY with the cdr of each pair in LIST using TEST as the comparison
procedures (which defaults to eqv?.

16.1.5 butlast

[procedure] (butlast LIST)

Returns a fresh list with all elements but the last of LIST.

16.1.6 chop

[procedure] (chop LIST N)

16 Unit extras 77

CHICKEN User's Manual - The User's Manual

Returns a new list of sublists, where each sublist contains N elements of LIST. If LIST has a length that is
not a multiple of N, then the last sublist contains the remaining elements.

(chop ' (1
a

2 3 45 6) 2) ==> ((1 2) (3 4) (5 6))
(chop '"(a b c d) 3)

16.1.7 compress

[procedure] (compress BLIST LIST)

Returns a new list with elements taken from LI ST with corresponding true values in the list BLIST.

(define nums ' (99 100 110 401 1234))

(compress (map odd? nums) nums) ==> (99 401)

16.1.8 flatten

[procedure] (flatten LIST1 ...)

Returns LIST1 ... concatenated together, with nested lists removed (flattened).

16.1.9 intersperse

[procedure] (intersperse LIST X)

Returns a new list with X placed between each element.

16.1.10 join

[procedure] (join LISTOFLISTS [LIST])

Concatenates the lists in LISTOFLISTS with LIST placed between each sublist. LIST defaults to the empty

list.
(jJoin '((a b) (c d) (e)) '(xvy)) ==> (abxycdzxye)
(Join "((p g) () (r (s) t)) '"(-)) ==> (p g - - r (s) t)

join could be implemented as follows:

(define (join lstoflsts #!optional (lst '()))
(apply append (intersperse lstoflists 1lst)))

16.1.11 shuffle

[procedure] (shuffle LIST)

Returns LI ST with its elements sorted in a random order.

16.1.6 chop

78

CHICKEN User's Manual - The User's Manual
16.1.12 tail?

[procedure] (tail? X LIST)

Returns true if X is one of the tails (cdr's) of LIST.

16.2 String-port extensions

16.2.1 call-with-input-string
[procedure] (call-with-input-string STRING PROC)

Calls the procedure PROC with a single argument that is a string-input-port with the contents of STRING.

16.2.2 call-with-output-string

[procedure] (call-with-output-string PROC)

Calls the procedure PROC with a single argument that is a string-output-port. Returns the accumulated
output-string.

16.2.3 with-input-from-string
[procedure] (with-input-from-string STRING THUNK)

Call procedure THUNK with the current input-port temporarily bound to an input-string-port with the contents
of STRING.

16.2.4 with-output-to-string

[procedure] (with-output-to-string THUNK)

Call procedure THUNK with the current output-port temporarily bound to a string-output-port and return the
accumulated output string.

16.3 Formatted output
16.3.1 printf

16.3.2 fprintf

16.1.12 tail? 79

CHICKEN User's Manual - The User's Manual
16.3.3 sprintf

[procedure] (fprintf PORT FORMATSTRING ARG ...)
[procedure] (printf FORMATSTRING ARG ...)
[procedure] (sprintf FORMATSTRING ARG ...)

Simple formatted output to a given port (fprint£), the value of (current-output-port) (printf),
or a string (sprintf). The FORMATSTRING can contain any sequence of characters. There must be at least
as many ARG arguments given as there are format directives that require an argument in FORMATSTRING.
Extra ARG arguments are ignored. The character “~' prefixes special formatting directives:

14
oe

write newline character
~N

the same as ~%
~S

write the next argument
~A

display the next argument
~ \ n

skip all whitespace in the format-string until the next non-whitespace character
~B

write the next argument as a binary number
~0

write the next argument as an octal number
~X

write the next argument as a hexadecimal number
~C

write the next argument as a character

display “~'

flush all pending output

~?

invoke formatted output routine recursively with the next two arguments as format-string and list of
parameters

16.3.4 format

[procedure] (format [DESTINATION] FORMATSTRING ARG ...)

The parameters FORMATSTRING and ARG ... are as for (print f/sprintf/fprintf).

16.3.3 sprintf 80

CHICKEN User's Manual - The User's Manual

The optional DESTINATION, when supplied, performs a (sprintf) fora #f, a (printf)fora #t, and a
(fprint£) for an output-port. When missing a (sprintf) is performed.

16.4 Hash tables

CHICKEN implements SRFI 69 with SRFI 90 extensions. For more information, see SRFI-69 and SRFI-90.

16.4.1 make-hash-table

[procedure] (make-hash-table [TEST HASH SIZE] #:TEST #:HASH #:SIZE #:INITIAL #:MIN-LOAD #:MAX-LOA
Returns a new HASH-TABLE with the supplied configuration.

TEST

The equivalence function.
HASH

The hash function.
SIZE

The expected number of table elements.
INITIAL

The default initial value.
MIN-LOAD

The minimum load factor. A £1onumin (0.0 1.0).
MAX—-LOAD

The maximum load factor. A £1onumin (0.0 1.0).
WEAK-KEYS

Use weak references for keys. (Ignored)
WEAK-VALUES

Use weak references for values. (Ignored)

(No, the keyword parameters are not uppercase.)

16.4.2 hash-table?

[procedure] (hash-table? OBJECT)

Is the OBJECT a hash-table?

16.4.3 hash-table-size

[procedure] (hash-table-size HASH-TABLE)

The HASH-TABLE size.

16.4.4 hash-table-equivalence-function
[procedure] (hash-table-equivalence-function HASH-TABLE)
The HASH-TABLE equivalence—function.

16.3.4 format 81

http://srfi.schemers.org/srfi-69/srfi-69.html
http://srfi.schemers.org/srfi-90/srfi-90.html

CHICKEN User's Manual - The User's Manual
16.4.5 hash-table-hash-function

[procedure]

The HASH-TABLE hash-function.

16.4.6 hash-table-min-load

[procedure] (hash-table-min-load HASH-TABLE)

The HASH-TABLE minimum load factor.

16.4.7 hash-table-max-load

[procedure] (hash-table-max-load HASH-TABLE)

The HASH-TABLE maximum load factor.

16.4.8 hash-table-weak-keys

[procedure] (hash-table-weak-keys HASH-TABLE)

Does the HASH-TABLE weak references for keys?

16.4.9 hash-table-weak-values

[procedure] (hash-table-weak-values HASH-TABLE)

Does the HASH-TABLE weak references for values?

16.4.10 hash-table-has-initial?

[procedure] (hash-table-has-initial? HASH-TABLE)

Does the HASH-TABLE have a default initial value?

16.4.11 hash-table-initial

[procedure] (hash-table-initial HASH-TABLE)

The HASH-TABLE default initial value.

16.4.12 hash-table-keys

[procedure] (hash-table-keys HASH-TABLE)

Returns a list of the keys in the HASH-TABLE population.

16.4.5 hash-table-hash-function

(hash-table-hash-function HASH-TABLE)

82

CHICKEN User's Manual - The User's Manual
16.4.13 hash-table-values

[procedure] (hash-table-values HASH-TABLE)

Returns a list of the values in the HASH-TABLE population.

16.4.14 hash-table alist

[procedure] (hash-table->alist HASH-TABLE)

Returns the population of the HASH-TABLE as an association-1ist.

16.4.15 alist hash-table

[procedure] (alist->hash-table ASSOCIATION-LIST [MAKE-HASH-TABLE-PARAMETER ...])

Returns a new HASH-TABLE, configured using the optional MAKE-HASH-TABLE-PARAMETER
HASH-TABLE is populated from the ASSOCIATION-LIST.

16.4.16 hash-table-ref

[procedure] (hash-table-ref HASH-TABLE KEY)
Returns the VALUE for the KEY in the HASH-TABLE.

Aborts with an exception when the KEY is missing.

16.4.17 hash-table-ref/default

[procedure] (hash-table-ref/default HASH-TABLE KEY DEFAULT)

Returns the VALUE for the KEY in the HASH-TABLE, or the DEFAULT when the KEY is missing.

16.4.18 hash-table-exists?

[procedure] (hash-table-exists? HASH-TABLE KEY)

Does the KEY exist in the HASH-TABLE?

16.4.19 hash-table-set!

[procedure] (hash-table-set! HASH-TABLE KEY VALUE)
Set the VALUE for the KEY in the HASH-TABLE.

A setter for hash—-table-ref is defined, so

(set! (hash-table-ref HASH-TABLE KEY) VALUE)

16.4.13 hash-table-values

.. The

83

CHICKEN User's Manual - The User's Manual

is equivalent to

(hash-table-set! HASH-TABLE KEY VALUE)

16.4.20 hash-table-update!

[procedure] (hash-table-update! HASH-TABLE KEY [UPDATE-FUNCTION [DEFAULT-VALUE-FUNCTION]])
Sets or replaces the VALUE for KEY in the HASH-TABLE.

The UPDATE-FUNCTION takes the existing VALUE for KEY and returns the new VALUE. The default is
identity

The DEFAULT-VALUE-FUNCTION is called when the entry for KEY is missing. The default uses the
(hash-table-initial-value), if provided. Otherwise aborts with an exception.

Returns the new VALUE.

16.4.21 hash-table-update!/default

[procedure] (hash-table-update! HASH-TABLE KEY UPDATE-FUNCTION DEFAULT-VALUE)
Sets or replaces the VALUE for KEY in the HASH-TABLE.

The UPDATE-FUNCTION takes the existing VALUE for KEY and returns the new VALUE.
The DEFAULT-VALUE is used when the entry for KEY is missing.

Returns the new VALUE.

16.4.22 hash-table-copy

[procededure] (hash-table-copy HASH-TABLE)

Returns a shallow copy of the HASH-TABLE.

16.4.23 hash-table-delete!

[procedure] (hash-table-delete! HASH-TABLE KEY)

Deletes the entry for KEY in the HASH-TABLE.

16.4.24 hash-table-remove!

[procedure] (hash-table-remove! HASH-TABLE PROC)

Calls PROC for all entries in HASH-TABLE with the key and value of each entry. If PROC returns true, then
that entry is removed.

16.4.19 hash-table-set! 84

CHICKEN User's Manual - The User's Manual
16.4.25 hash-table-merge

[procedure] (hash-table-merge HASH-TABLE-1 HASH-TABLE-2)

Returns a new HASH-TABLE with the union of HASH-TABLE-1 and HASH-TABLE-2.

16.4.26 hash-table-merge!

[procedure] (hash-table-merge! HASH-TABLE-1 HASH-TABLE-2)

Returns HASH-TABLE-1 as the union of HASH-TABLE-1 and HASH-TABLE-2.

16.4.27 hash-table-map

[procedure] (hash-table-map HASH-TABLE FUNC)
Calls FUNC for all entries in HASH-TABLE with the key and value of each entry.

Returns a list of the results of each call.

16.4.28 hash-table-fold

[procedure] (hash-table-fold HASH-TABLE FUNC INIT)

Calls FUNC for all entries in HASH-TABLE with the key and value of each entry, and the current folded
value. The initial folded value is INIT.

Returns the final folded value.

16.4.29 hash-table-for-each

[procedure] (hash-table-for-each HASH-TABLE PROC)

Calls PROC for all entries in HASH-TABLE with the key and value of each entry.

16.4.30 hash-table-walk

[procedure] (hash-table-walk HASH-TABLE PROC)

Calls PROC for all entries in HASH-TABLE with the key and value of each entry.

16.5 Hash Functions

All hash functions return a £ixnum in the range [0 BOUND).

16.4.25 hash-table-merge 85

CHICKEN User's Manual - The User's Manual
16.5.1 number-hash

[procedure] (number-hash NUMBER [BOUND])

For use with = as a hash-table—-equivalence-function.

16.5.2 object-uid-hash

[procedure] (object-uid-hash OBJECT [BOUND])

Currently a synonym for equal?-hash.

16.5.3 symbol-hash

[procedure] (symbol-hash SYMBOL [BOUND])

For use with eq? as a hash-table-equivalence-function

16.5.4 keyword-hash

[procedure] (keyword-hash KEYWORD [BOUND])

For use with eq? as a hash-table—-equivalence-function.

16.5.5 string-hash

[procedure] (string-hash STRING [BOUND])

For use with string=2? asahash-table-equivalence-function.

16.5.6 string-ci-hash

[procedure] (string-ci-hash STRING [BOUND])

For use with string—-ci=? asahash-table—-equivalence-function.

16.5.7 eq?-hash

[procedure] (eg?-hash OBJECT [BOUND])

For use with eq? as a hash-table—-equivalence-function.

16.5.8 eqv?-hash

[procedure] (egv?-hash OBJECT [BOUND])

For use with eqv? as a hash-table-equivalence—function.

16.5.1 number-hash 86

CHICKEN User's Manual - The User's Manual
16.5.9 equal?-hash

[procedure] (equal?-hash OBJECT [BOUND])

For use with equal? asa hash-table-equivalence—function.

16.5.10 hash

[procedure] (hash OBJECT [BOUND])

Synonym for equal?-hash.

16.5.11 hash-by-identity
[procedure] (hash-by-identity OBJECT [BOUND])

Synonym for eg?—-hash.

16.6 Queues

16.6.1 list queue
[procedure] (list->queue LIST)
Returns LIST converted into a queue, where the first element of the list is the same as the first element of the

queue. The resulting queue may share memory with the list and the list should not be modified after this
operation.

16.6.2 make-queue

[procedure] (make-queue)

Returns a newly created queue.

16.6.3 queue?
[procedure] (queue? X)

Returns #t if X is a queue, or # £ otherwise.

16.6.4 queue list
[procedure] (queue->1list QUEUE)

Returns QUEUE converted into a list, where the first element of the list is the same as the first element of the
queue. The resulting list may share memory with the queue object and should not be modified.

16.5.9 equal?-hash 87

CHICKEN User's Manual - The User's Manual
16.6.5 queue-add!

[procedure] (queue-add! QUEUE X)

Adds X to the rear of QUEUE.

16.6.6 queue-empty?

[procedure] (queue-empty? QUEUE)

Returns #t if QUEUE is empty, or # £ otherwise.

16.6.7 queue-first

[procedure] (queue-first QUEUE)

Returns the first element of QUEUE. If QUEUE is empty an error is signaled

16.6.8 queue-last
[procedure]

(queue-last QUEUE)

Returns the last element of QUEUE. If QUEUE is empty an error is signaled

16.6.9 queue-remove!

[procedure] (queue-remove! QUEUE)

Removes and returns the first element of QUEUE. If QUEUE is empty an error is signaled

16.6.10 queue-push-back!

[procedure] (queue-push-back! QUEUE ITEM)

Pushes an item into the first position of a queue, i.e. the next queue-remove ! will return ITEM.

16.6.11 queue-push-back-list!

[procedure] (queue-push-back-list! QUEUE LIST)

Pushes the items in item-list back onto the queue, so that (car LIST) becomes the next removable item.

16.7 Sorting

16.6.5 queue-add! 88

CHICKEN User's Manual - The User's Manual
16.7.1 merge

[procedure] (merge LIST1 LIST2 LESS?)
[procedure] (merge! LIST1 LIST2 LESS?)

Joins two lists in sorted order. merge! is the destructive version of merge. LESS ? should be a procedure of
two arguments, that returns true if the first argument is to be ordered before the second argument.

16.7.2 sort

[procedure] (sort SEQUENCE LESS?)
[procedure] (sort! SEQUENCE LESS?)

Sort SEQUENCE, which should be a list or a vector. sort ! is the destructive version of sort.

16.7.3 sorted?

[procedure] (sorted? SEQUENCE LESS?)

Returns true if the list or vector SEQUENCE is already sorted.

16.8 Random numbers

16.8.1 random-seed

[procedure] (random-seed [SEED])

Seeds the random number generator with SEED (an exact integer) or (current-seconds) if SEED is not
given.

16.8.2 random

[procedure] (random N)

Returns an exact random integer from O to N-1.

16.8.3 randomize

[procedure] (randomize [X])

Set random-number seed. If X is not supplied, the current time is used. On startup (when the ext ras unit is
initialized), the random number generator is initialized with the current time.

16.9 Input/Output extensions

16.7.1 merge 89

CHICKEN User's Manual - The User's Manual

16.9.1 make-input-port

[procedure] (make-input-port READ READY? CLOSE [PEEK])

Returns a custom input port. Common operations on this port are handled by the given parameters, which
should be procedures of no arguments. READ is called when the next character is to be read and should return
a character or # ! eof. READY? is called when char-ready? is called on this port and should return #t or
#f. CLOSE is called when the port is closed. PEEK is called when peek-char is called on this port and

should return a character or # ! eof. if the argument PEEK is not given, then READ is used instead and the
created port object handles peeking automatically (by calling READ and buffering the character).

16.9.2 make-output-port

[procedure] (make-output-port WRITE CLOSE [FLUSH])

Returns a custom output port. Common operations on this port are handled by the given parameters, which
should be procedures. WRITE is called when output is sent to the port and receives a single argument, a string.

CLOSE is called when the port is closed and should be a procedure of no arguments. FLUSH (if provided) is
called for flushing the output port.

16.9.3 pretty-print

[procedure] (pretty-print EXP [PORT])
[procedure] (pp EXP [PORT])

Print expression nicely formatted. PORT defaults to the value of (current-output-port).

16.9.4 pretty-print-width

(Parameter) Specifies the maximal line-width for pretty printing, after which line wrap will occur.

16.9.5 read-byte

16.9.6 write-byte

[procedure] (read-byte [PORT])
[procedure] (write-byte BYTE [PORT])

Read/write a byte to the port given in PORT, which default to the values of (current-input-port) and
(current-output-port), respectively.

16.9.7 read-file

[procedure] (read-file [FILE-OR-PORT [READER [MAXCOUNT]]])
Returns a list containing all toplevel expressions read from the file or port FILE-OR—-PORT. If no argument

is given, input is read from the port that is the current value of (current-input-port). After all
expressions are read, and if the argument is a port, then the port will not be closed. The READER argument

16.9.1 make-input-port 90

CHICKEN User's Manual - The User's Manual

specifies the procedure used to read expressions from the given file or port and defaults to read. The reader
procedure will be called with a single argument (an input port). If MAXCOUNT is given then only up to
MAXCOUNT expressions will be read in.

16.9.8 read-line

16.9.9 write-line

[procedure] (read-line [PORT [LIMIT]])
[procedure] (write-line STRING [PORT])

Line-input and -output. PORT defaults to the value of (current-input-port) and
(current-output-port), respectively. If the optional argument LIMIT is given and not # £, then
read-1line reads at most LIMIT characters per line. read-11ine returns a string without the terminating
newline and write—-1ine adds a terminating newline before outputting.

16.9.10 read-lines

[procedure] (read-lines [PORT [MAX]])
Read MAX or fewer lines from PORT. PORT defaults to the value of (current-input-port).PORT may

optionally be a string naming a file. Returns a list of strings, each string representing a line read, not including
any line separation character(s).

16.9.11 read-string

16.9.12 read-string!

16.9.13 write-string

[procedure] (read-string [NUM [PORT]])
[procedure] (read-string! NUM STRING [PORT [START]])
[procedure] (write-string STRING [NUM [PORT]]

Read or write NUM characters from/to PORT, which defaults to the value of (current-input-port) or
(current-output-port), respectively. If NUM is # £ or not given, then all data up to the end-of-file is
read, or, in the case of write—-string the whole string is written. If no more input is available,
read-string returns the empty string. read-string! reads destructively into the given STRING
argument, but never more characters that would fit into STRING. If START is given, then the read characters
are stored starting at that position. read-string! returns the actual number of characters read.

16.9.14 read-token

[procedure] (read-token PREDICATE [PORT])

Reads characters from PORT (which defaults to the value of (current-input-port)) and calls the
procedure PREDICATE with each character until PREDICATE returns false. Returns a string with the

16.9.7 read-file 91

CHICKEN User's Manual - The User's Manual

accumulated characters.

16.9.15 with-error-output-to-port
[procedure] (with-error-output-to-port PORT THUNK)

Call procedure THUNK with the current error output-port temporarily bound to PORT.

16.9.16 with-input-from-port
[procedure] (with-input-from-port PORT THUNK)

Call procedure THUNK with the current input-port temporarily bound to PORT.

16.9.17 with-output-to-port
[procedure] (with-output-to-port PORT THUNK)

Call procedure THUNK with the current output-port temporarily bound to PORT.

16.10 Strings

16.10.1 conc

[procedure] (conc X ...)

Returns a string with the string-represenation of all arguments concatenated together. conc could be
implemented as

(define (conc . args)
(apply string-append (map —->string args)))

16.10.2 string

[procedure] (->string X)

Returns a string-representation of X.

16.10.3 string-chop
[procedure] (string-chop STRING LENGTH)

Returns a list of substrings taken by chopping STRING every LENGTH characters:

(string-chop 4y ==>)

16.9.14 read-token

92

CHICKEN User's Manual - The User's Manual
16.10.4 string-chomp
[procedure] (string-chomp STRING [SUFFIX])

If STRING ends with SUFF IX, then this procedure returns a copy of its first argument with the suffix
removed, otherwise returns STRING unchanged. SUFFIX defaults to "\n".

16.10.5 string-compare3

[procedure] (string-compare3 STRING1 STRING2)
[procedure] (string-compare3-ci STRING1 STRING2)

Perform a three-way comparison between the STRING1 and STRING2, returning either —1 if STRING1 is

lexicographically less than STRING2, 0 if it is equal, or 1 if it s greater. st ring—compare3-ci performs
a case-insensitive comparison.

16.10.6 string-intersperse

[procedure] (string-intersperse LIST [STRING])

Returns a string that contains all strings in LIST concatenated together. STRING is placed between each
concatenated string and defaults to " .

(string—-intersperse ' ())
is equivalent to

(apply string-append (intersperse '()))

16.10.7 string-split
[procedure] (string-split STRING [DELIMITER-STRING [KEEPEMPTY]])

Split string into substrings separated by the given delimiters. If no delimiters are specified, a string comprising
the tab, newline and space characters is assumed. If the parameter KEEPEMPTY is given and not # £, then
empty substrings are retained:

(string-split) ==> ()

(string-split #t) ==> ()

16.10.8 string-translate

[procedure] (string-translate STRING FROM [TO])

Returns a fresh copy of STRING with characters matching FROM translated to TO. If TO is omitted, then

matching characters are removed. FROM and TO may be a character, a string or a list. If both FROM and TO are
strings, then the character at the same position in TO as the matching character in FROM is substituted.

16.10.4 string-chomp 93

CHICKEN User's Manual - The User's Manual

16.10.9 string-translate*

[procedure] (string-translate* STRING SMAP)

Substitutes elements of STRING according to SMAP. SMAP should be an association-list where each element
of the list is a pair of the form (MATCH \. REPLACEMENT) . Every occurrence of the string MATCH in

STRING will be replaced by the string REPLACEMENT:

(string-translate*

" .) (.) .)))
16.10.10 substring="?

[procedure] (substring=? STRING1 STRING2 [START1 [START2 [LENGTH]]])
[procedure] (substring-ci=? STRING1 STRING2 [START1 [START2 [LENGTH]]])

Returns #t if the strings STRING1 and STRING2 are equal, or # £ otherwise. The comparison starts at the

positions START1 and STARTZ2 (which default to 0), comparing LENGTH characters (which defaults to the
minimum of the remaining length of both strings).

16.10.11 substring-index

[procedure] (substring-index WHICH WHERE [START])
[procedure] (substring-index-ci WHICH WHERE [START])

Searches for first index in string WHERE where string WHICH occurs. If the optional argument START is
given, then the search starts at that index. substring-index—ci is a case-insensitive version of
substring-index.

16.11 Combinators

16.11.1 any?

[procedure] (any? X)

Ignores its argument and always returns #t. This is actually useful sometimes.

16.11.2 none?

[procedure] (none? X)

Ignores its argument and always returns # £. This is actually useful sometimes.

16.11.3 always?

[procedure] (always? ...)

16.10.9 string-translate* 94

CHICKEN User's Manual - The User's Manual

Ignores its arguments and always returns #t. This is actually useful sometimes.

16.11.4 never?

[procedure] (never? ...)

Ignores its arguments and always returns # £. This is actually useful sometimes.

16.11.5 constantly

[procedure] (constantly X ...)
Returns a procedure that always returns the values X . .. regardless of the number and value of its
arguments.

(constantly X) <=> (lambda args X)

16.11.6 complement
[procedure] (complement PROC)
Returns a procedure that returns the boolean inverse of PROC.

(complement PROC) <=> (lambda (x) (not (PROC x)))

16.11.7 compose
[procedure] (compose PROC1 PROC2 ...)
Returns a procedure that represents the composition of the argument-procedures PROC1 PROC2

(compose F G) <=> (lambda args
(call-with-values
(lambda () (apply G args))
F))

(compose) is equivalent to values.

16.11.8 conjoin

[procedure] (conjoin PRED ...)

Returns a procedure that returns #t if its argument satisfies the predicates PRED

((conjoin odd? positive?) 33) ==> #t
((conjoin odd? positive?) -33) ==> #f

16.11.3 always?

95

CHICKEN User's Manual - The User's Manual
16.11.9 disjoin
[procedure] (disjoin PRED ...)

Returns a procedure that returns #t if its argument satisfies any predicate PRED

((disjoin odd? positive?) 32) ==> #t
((disjoin odd? positive?) -32) ==> #f
16.11.10 each

[procedure] (each PROC ...)

Returns a procedure that applies PROC . . . to its arguments, and returns the result(s) of the last procedure
application. For example

(each pp eval)

is equivalent to

(lambda args

(apply pp args)
(apply eval args))

(each PROC) isequivalent to PROC and (each) is equivalent to noop.

16.11.11 flip

[procedure] (flip PROC)

Returns a two-argument procedure that calls PROC with its arguments swapped:

(flip PROC) <=> (lambda (x y) (PROC y x))

16.11.12 identity

[procedure] (identity X)

Returns its sole argument X.

16.11.13 project

[procedure] (project N)

Returns a procedure that returns its Nth argument (starting from 0).

16.11.14 list-of

[procedure] (list-of PRED)

16.11.9 disjoin

CHICKEN User's Manual - The User's Manual

Returns a procedure of one argument that returns #t when applied to a list of elements that all satisfy the
predicate procedure PRED, or # f otherwise.

((list-of even?) '(1 2 3)) =
((list-of number?) '(1 2 3)) =

16.11.15 noop

[procedure] (noop X ...)

Ignores it's arguments, does nothing and returns an unspecified value.

16.11.16 o

[procedure] (o PROC ...)

A single value version of compose (slightly faster). (o) is equivalentto identity.

16.11.17 left-section

[procedure] (left-section PROC ARGO ...)

Returns an n-ary procedure that partially applies its' arguments ARGO . . . from the left (normal order). Sort
of a n-ary curry.

16.11.18 right-section
[procedure] (right-section PROC ARGO ...)

Returns an n-ary procedure that partially applies its' arguments ARGO . . . from the right (reverse order).
Sort of a n-ary curry.

16.12 Binary searching

16.12.1 binary-search

[procedure] (binary-search SEQUENCE PROC)

Performs a binary search in SEQUENCE, which should be a sorted list or vector. PROC is called to compare
items in the sequence, should accept a single argument and return an exact integer: zero if the searched value
is equal to the current item, negative if the searched value is /ess than the current item, and positive otherwise.
Returns the index of the found value or # £ otherwise.

Previous: Unit eval

Next: Unit srfi-1

16.11.14 list-of 97

17 Unit srfi-1

List library, see the documentation for SRFI-1
Previous: Unit extras

Next: Unit srfi-4

17 Unit srfi-1

98

http://srfi.schemers.org/srfi-1/srfi-1.html

18 Unit srfi-4

Homogeneous numeric vectors, see the documentation for SRFI-4 64-bit integer vectors (u64vector and
s64vector are not supported.

The basic constructor procedures for number vectors are extended to allow allocating the storage in non
garbage collected memory:

18.1 make-XXXvector

[procedure] (make-XXXvector SIZE [INIT NONGC FINALIZE])

Creates a SRFI-4 homogenous number vector of length SIZE. If INIT is given, it specifies the initial value
for each slot in the vector. The optional arguments NONGC and FINALIZE define whether the vector should
be allocated in a memory area not subject to garbage collection and whether the associated storage should be
automatically freed (using finalization) when there are no references from Scheme variables and data. NONGC
defaults to # £ (the vector will be located in normal garbage collected memory) and FINALIZE defaults to
#t. Note that the FINALIZE argument is only used when NONGC is true.

Additionally, the following procedures are provided:

18.2 u8vector blob

18.3 s8vector blob

18.4 ui6vector blob

18.5 s16vector blob

18.6 u32vector blob

18.7 s32vector blob

18.8 f32vector blob

18.9 f64vector blob

18 Unit srfi-4 99

http://srfi.schemers.org/srfi-4/srfi-4.html

CHICKEN User's Manual - The User's Manual

18.10 u8vector blob/shared

18.11 s8vector blob/shared

18.12 ui6vector blob/shared

18.13 s16vector blob/shared

18.14 u32vector blob/shared

18.15 s32vector blob/shared

18.16 f32vector blob/shared

18.17 f64vector blob/shared

[procedure] (u8vector->blob USVECTOR)
[procedure] (s8vector->blob S8VECTOR)
[procedure] (ul6vector->blob Ul6VECTOR)
[procedure] (sl6vector->blob S16VECTOR)
[procedure] (u32vector->blob U32VECTOR)
[procedure] (s32vector->blob S32VECTOR)
[procedure] (f32vector->blob F32VECTOR)
[procedure] (f64vector->blob F64VECTOR)
[procedure] (u8vector->blob/shared U8SVECTOR)
[procedure] (s8vector->blob/shared S8VECTOR)
[procedure] (ul6vector—->blob/shared Ul6VECTOR)
[procedure] (sl6vector—->blob/shared S16VECTOR)
[procedure] (u32vector->blob/shared U32VECTOR)
[procedure] (s32vector—->blob/shared S32VECTOR)
[procedure] (f32vector->blob/shared F32VECTOR)
[procedure] (f64vector->blob/shared F64VECTOR)

Each of these procedures return the contents of the given vector as a 'packed’ blob. The byte order in that
vector is platform-dependent (for example little-endian on an Intel processor). The /shared variants return
a blob that shares memory with the contents of the vector.

18.18 blob u8vector

18.19 blob s8vector

18.10 u8vector blob/shared 100

CHICKEN User's Manual - The User's Manual

18.20 blob ui16vector

18.21 blob s16vector

18.22 blob u32vector

18.23 blob s32vector

18.24 blob f32vector

18.25 blob f64vector

18.26 blob u8vector/shared

18.27 blob s8vector/shared

18.28 blob u16vector/shared
18.29 blob s16vector/shared
18.30 blob u32vector/shared
18.31 blob s32vector/shared
18.32 blob f32vector/shared

18.33 blob f64vector/shared

[procedure] (blob->u8vector BLOB)
[procedure] (blob->s8vector BLOB)
[procedure] (blob->ulé6vector BLOB)
[procedure] (blob->slé6vector BLOB)
[procedure] (blob->u32vector BLOB)
[procedure] (blob->s32vector BLOB)

1«)

[procedure blob->f32vector BLOB

18.20 blob u16vector 101

CHICKEN User's Manual - The User's Manual

[procedure blob->f64vector BLOB)

[procedure blob->u8vector/shared BLOB)
[procedure blob->s8vector/shared BLOB)
[procedure blob->ul6vector/shared BLOB

I«
I«
I«
I«
[procedure] (blob->sl6vector/shared BLOB
I«
I«
I«
I«

)
)
[procedure blob->u32vector/shared BLOB)
[procedure blob->s32vector/shared BLOB)
[procedure blob->f32vector/shared BLOB)
[procedure blob->f64vector/shared BLOB)

Each of these procedures return a vector where the argument BLOB is taken as a 'packed' representation of the
contents of the vector. The /shared variants return a vector that shares memory with the contents of the
blob.

18.34 subu8vector

18.35 subui6vector

18.36 subu32vector

18.37 subs8vector

18.38 subs16vector

18.39 subs32vector

18.40 subf32vector

18.41 subf64vector

[procedure] (subu8vector UBVECTOR FROM TO)

[procedure] (subul6vector Ul6VECTOR FROM TO)
[procedure] (subu32vector U32VECTOR FROM TO)
[procedure] (subs8vector S8VECTOR FROM TO)

[procedure] (subsl6vector S16VECTOR FROM TO)
[procedure] (subs32vector S32VECTOR FROM TO)
[procedure] (subf32vector F32VECTOR FROM TO)
[procedure] (subf6d4vector F64VECTOR FROM TO)

Creates a number vector of the same type as the argument vector with the elements at the positions FROM up
to but not including TO.

SRFI-17 Setters for XXXvector—ref are defined.

18.33 blob f64vector/shared 102

CHICKEN User's Manual - The User's Manual

18.42 read-u8vector

[procedure] (read-u8vector LENGTH [PORT])
Reads LENGTH bytes from the PORT and returns a fresh u8vector or less if end-of-file is encountered.

PORT defaults to the value of (current—-input-port).If LENGTH is #f, the vector will be filled
completely until end-of-file is reached.

18.43 read-u8vector!

[procedure] (read-u8vector! LENGTH UBVECTOR [PORT [START]])
Reads LENGTH bytes from the PORT writing the read input into USVECTOR beginning at START (or O if not

given). PORT defaults to the value of (current-input-port).If LENGTH is #£f, the vector will be
filled completely until end-of-file is reached. This procedure returns the number of bytes read.

18.44 write-u8vector

[procedure] (write-u8vector U8SVECTOR [PORT [START [END]]])

Writes the bytes USVECTOR between the indices START (inclusive) and END (exclusive) to PORT. PORT
defaults to the value of (current-output-port).

Previous: Unit srfi-1

Next: Unit srfi-13

18.42 read-u8vector 103

19 Unit srfi-13

String library, see the documentation for SRFI-13

On systems that support dynamic loading, the sr£1i-13 unit can be made available in the interpreter (csi)
by entering

(require-extension srfi-13)
Previous: Unit srfi-4

Next: Unit srfi-14

19 Unit srfi-13 104

http://srfi.schemers.org/srfi-13/srfi-13.html

20 Unit srfi-14

Character set library, see the documentation for SRFI-14

On systems that support dynamic loading, the srf£i-14 unit can be made available in the interpreter (cs1i)
by entering

(require—-extension srfi-14)
This library provides only the Latin-1 character set.
Previous: Unit srfi-13

Next: Unit match

20 Unit srfi-14 105

http://srfi.schemers.org/srfi-14/srfi-14.html

21 Unit match

The runtime-support code for the Pattern Matching extensions. Note that to use the macros in normal
compiled code it is not required to declare this unit as used. It is only necessary to do so if forms containing
these macros are to be expanded at runtime.

Previous: Unit srfi-14

Next: Unit regex

21 Unit match 106

http://chicken.wiki.br/Pattern%20matching

22 Unit regex

This library unit provides support for regular expressions. The regular expression package used is PCRE (Per!
Compatible Regular Expressions) written by Philip Hazel. See http://www.pcre.org for information about the
particular regexp flavor and extensions provided by this library.

To test that PCRE support has been built into Chicken properly, try:

(require 'regex)
(test—-feature? 'pcre) => t

22.1 grep

[procedure] (grep REGEX LIST)

Returns all items of LIST that match the regular expression REGEX. This procedure could be defined as
follows:

(define (grep regex lst)
(filter (lambda (x) (string-search regex x)) 1lst))

22.2 glob regexp

[procedure] (glob->regexp PATTERN)

Converts the file-pattern PATTERN into a regular expression.

(glob->regexp)
=>

PATTERN should follow "glob" syntax. Allowed wildcards are

*

[C...]
[C1-C2]
[-C...]

22.3 glob?

[procedure] (glob? STRING)
Does the STRING have any "glob" wildcards?

A string without any "glob" wildcards does not meet the criteria, even though it technically is a valid "glob"
file-pattern.

22.4 regexp

[procedure] (regexp STRING [IGNORECASE [IGNORESPACE [UTF8]]])

22 Unit regex 107

http://www.pcre.org

CHICKEN User's Manual - The User's Manual

Returns a precompiled regular expression object for st ring. The optional arguments IGNORECASE,
IGNORESPACE and UTF 8 specify whether the regular expression should be matched with case- or
whitespace-differences ignored, or whether the string should be treated as containing UTF-8 encoded
characters, respectively.

*
22.5 regexp
[procedure] (regexp* STRING [OPTIONS [TABLES]])

Returns a precompiled regular expression object for st ring. The optional argument OPTIONS must be a list
of option symbols. The optional argument TABLES must be a character definitions table (not defined here).

Option Symbols:

caseless
Character case insensitive match
multiline
Equivalent to Perl's /m option
dotall
Equivalent to Perl's /s option
extended
Ignore whitespace
anchored
Anchor pattern match
dollar-endonly
*$' metacharacter in the pattern matches only at the end of the subject string
extra
Currently of very little use
notbol
First character of the string is not the beginning of a line
noteol
End of the string is not the end of a line
ungreedy
Inverts the "greediness" of the quantifiers so that they are not greedy by default
notempty
The empty string is not considered to be a valid match
utf8
UTF-8 encoded characters
no-auto-capture
Disables the use of numbered capturing parentheses
no-utf8-check
Skip valid UTF-8 sequence check
auto-callout
Automatically inserts callout items (not defined here)
partial
Partial match ok
firstline
An unanchored pattern is required to match before or at the first newline
dupnames
Names used to identify capturing subpatterns need not be unique
newline-cr
Newline definition is “\r'
newline-1f

22.4 regexp 108

CHICKEN User's Manual - The User's Manual

Newline definition is “\n'
newline-crlf

Newline definition is “\r\n'
newline-anycrlf

Newline definition is any of "\r', "\n', or “\r\n'
newline-any

Newline definition is any Unicode newline sequence
bsr-anycrlf

"\R' escape sequence matches only CR, LF, or CRLF
bsr-unicode

"\R' escape sequence matches only Unicode newline sequence
dfa-shortest

Currently unused
dfa-restart

Currently unused

22.6 regexp?

[procedure] (regexp? X)

Returns #t if X is a precompiled regular expression, or # £ otherwise.

22.7 regexp-optimize
[procedure] (regexp-optimize RX)

Perform available optimizations for the precompiled regular expression RX. Returns #t when optimization
performed, and # £ otherwise.

22.8 string-match

22.9 string-match-positions

[procedure] (string-match REGEXP STRING [START])
[procedure] (string-match-positions REGEXP STRING [START])

Matches the regular expression in REGEXP (a string or a precompiled regular expression) with STRING and
returns either # £ if the match failed, or a list of matching groups, where the first element is the complete
match. If the optional argument START is supplied, it specifies the starting position in STRING. For each
matching group the result-list contains either: # £ for a non-matching but optional group; a list of start- and
end-position of the match in STRING (in the case of st ring-match-positions); or the matching
substring (in the case of st ring-match). Note that the exact string is matched. For searching a pattern
inside a string, see below. Note also that st ring-match is implemented by calling st ring—-search
with the regular expression wrapped in ~ ... $.If invoked with a precompiled regular expression
argument (by using regexp), string-match is identical to st ring-search.

22.5 regexp* 109

CHICKEN User's Manual - The User's Manual

22.10 string-search

22.11 string-search-positions

[procedure] (string-search REGEXP STRING [START [RANGE]])
[procedure] (string-search-positions REGEXP STRING [START [RANGE]])

Searches for the first match of the regular expression in REGEXP with STRING. The search can be limited to
RANGE characters.

22.12 string-split-fields
[procedure] (string-split-fields REGEXP STRING [MODE [START]])

Splits STRING into a list of fields according to MODE, where MODE can be the keyword # : infix (REGEXP
matches field separator), the keyword # : suf £ ix (REGEXP matches field terminator) or #t (REGEXP
matches field), which is the default.

(define s)
(string-split-fields s)

= ()
(string-split—-fields s #:infix)

= ()
(string-split-fields s #:suffix)

=> ()

22.13 string-substitute

[procedure] (string-substitute REGEXP SUBST STRING [MODE])

Searches substrings in STRING that match REGEXP and substitutes them with the string SUBST. The
substitution can contain references to subexpressions in REGEXP with the \NUM notation, where NUM refers
to the NUMth parenthesized expression. The optional argument MODE defaults to 1 and specifies the number
of the match to be substituted. Any non-numeric index specifies that all matches are to be substituted.

(string-substitute

=>

Note that a regular expression that matches an empty string will signal an error.

22.14 string-substitute*

[procedure] (string-substitute* STRING SMAP [MODE])

22.10 string-search 110

CHICKEN User's Manual - The User's Manual

Substitutes elements of STRING with string-substitute according to SMAP. SMAP should be an
association-list where each element of the list is a pair of the form (MATCH . REPLACEMENT). Every
occurrence of the regular expression MATCH in STRING will be replaced by the string REPLACEMENT

(string-substitute*
' .)))

22.15 regexp-escape

[procedure] (regexp-escape STRING)
Escapes all special characters in STRING with \, so that the string can be embedded into a regular expression.

(regexp—escape)
=>

22.16 make-anchored-pattern

[procedure] (make-anchored-pattern REGEXP [WITHOUT-BOL [WITHOUT-EOL]])

Makes an anchored pattern from REGEXP (a string or a precompiled regular expression) and returns the
updated pattern. When WITHOUT-BOL is #t the beginning-of-line anchor is not added. When
WITHOUT-EOL is #t the end-of-line anchor is not added.

The WITHOUT-BOL and {WITHOUT-EOL}} arguments are ignored for a precompiled regular expression.

Previous: Unit match

Next: Unit srfi-18

22.14 string-substitute* 111

23 Unit srfi-18

A simple multithreading package. This threading package follows largely the specification of SRFI-18. For
more information see the documentation for SRFI-18.

Notes:

e thread-start! accepts a thunk (a zero argument procedure) as argument, which is equivalent to
(thread-start! (make—-thread THUNK)).
® thread—-sleep! accepts a seconds real number value in addition to a time object.
® When an uncaught exception (i.e. an error) is signalled in a thread other than the primordial thread
and warnings are enabled (see: enable-warnings, then a warning message is written to the port
that is the value of (current-error-port).
¢ Blocking I/0 will block all threads, except for some socket operations (see the section about the t cp
unit). An exception is the read-eval-print loop on UNIX platforms: waiting for input will not block
other threads, provided the current input port reads input from a console.
e |t is generally not a good idea for one thread to call a continuation created by another thread, if
dynamic-wind is involved.
® When more than one thread compete for the current time-slice, the thread that was waiting first will
become the next runnable thread.
® The dynamic environment of a thread consists of the following state:
¢ The current input-, output- and error-port
¢ The current exception handler
¢ The values of all current parameters (created by make-parameter)
¢ Any pending dynamic-wind thunks.

The following procedures are provided, in addition to the procedures defined in SRFI-18:

23.1 thread-signal!
[procedure] (thread-signal! THREAD X)

This will cause THREAD to signal the condition X once it is scheduled for execution. After signalling the
condition, the thread continues with its normal execution.

23.2 thread-quantum

[procedure] (thread-quantum THREAD)

Returns the quantum of THREAD, which is an exact integer specifying the approximate time-slice of the
thread in milliseconds.

23.3 thread-quantum-set!

[procedure] (thread-quantum-set! THREAD QUANTUM)

Sets the quantum of THREAD to QUANTUM.

23 Unit srfi-18 112

http://srfi.schemers.org/srfi-18/srfi-18.html

CHICKEN User's Manual - The User's Manual

23.4 thread-suspend!

[procedure] (thread-suspend! THREAD)

Suspends the execution of THREAD until resumed.

23.5 thread-resume!

[procedure] (thread-resume! THREAD)

Readies the suspended thread THREAD.

23.6 thread-wait-for-i/o!

[procedure] (thread-wait-for-i/o! FD [MODE])

Suspends the current thread until input (MODE is # : input), output (MODE is # : output) or both (MODE is

#:all)is available. FD should be a file-descriptor (not a port!) open for input or output, respectively.

23.7 time milliseconds

[procedure] (time->milliseconds TIME)

Converts a time object (as created via current -t ime) into an exact integer representing the number of
milliseconds since process startup.

Previous: Unit regex

Next: Unit posix

23.4 thread-suspend!

113

24 Unit posix

This unit provides services as used on many UNIX-like systems. Note that the following definitions are not all

available on non-UNIX systems like Windows. See below for Windows specific notes.
This unit uses the regex, scheduler, extras and utils units.

All errors related to failing file-operations will signal a condition of kind (exn i/o0 file).

24.1 Constants

24.1.1 File-control Commands
24.1.1.1 fentl/dupfd

24.1.1.2 fcntl/getfd

24.1.1.3 fentl/setfd

24.1.1.4 fentl/getfl

24.1.1.5 fentl/setfl

24.1.2 Standard 1/O file-descriptors

24.1.2.1 fileno/stdin

24.1.2.2 fileno/stdout

24.1.2.3 fileno/stderr

24.1.3 Open flags

24.1.3.1 open/rdonly

24 Unit posix

114

CHICKEN User's Manual - The User's Manual
24.1.3.2 open/wronly

24.1.3.3 open/rdwr

24.1.3.4 open/read

24.1.3.5 open/write

24.1.3.6 open/creat

24.1.3.7 open/append

24.1.3.8 open/excl

24.1.3.9 open/noctty

24.1.3.10 open/nonblock

24.1.3.11 open/trunc

24.1.3.12 open/sync

24.1.3.13 open/fsync

24.1.3.14 open/binary

24.1.3.15 open/text

24.1.4 Permission bits

24.1.4.1 perm/irusr

24.1.4.2 perm/iwusr

24.1.3 Open flags

115

CHICKEN User's Manual - The User's Manual
24.1.4.3 perm/ixusr

24.1.4.4 perm/irgrp
24.1.4.5 perm/iwgrp
24.1.4.6 perm/ixgrp
24.1.4.7 perm/iroth
24.1.4.8 perm/iwoth
24.1.4.9 perm/ixoth
24.1.4.10 perm/irwxu
24.1.4.11 perm/irwxg
24.1.4.12 perm/irwxo
24.1.4.13 perm/isvix
24.1.4.14 perm/isuid

24.1.4.15 perm/isgid

24.2 Directories

24.2.1 change-directory

[procedure] (change-directory NAME)

Changes the current working directory to NAME.

24.2.2 current-directory

[procedure] (current-directory [DIR])

24.1.4 Permission bits

CHICKEN User's Manual - The User's Manual

Returns the name of the current working directory. If the optional argument DIR is given, then
(current—-directory DIR) isequivalentto (change-directory DIR).

24.2.3 create-directory

[procedure] (create-directory NAME)

Creates a directory with the pathname NAME.

24.2.4 delete-directory

[procedure] (delete-directory NAME)

Deletes the directory with the pathname NAME. The directory has to be empty.

24.2.5 directory

[procedure] (directory [PATHNAME [SHOW-DOTFILES?]])

Returns a list with all files that are contained in the directory with the name PATHNAME (which defaults to the
value of (current-directory)). Files beginning with . are included only if SHOW-DOTFILES? is
given and not #f.

24.2.6 directory?

[procedure] (directory? NAME)

Returns #t if there exists a file with the name NAME and if that file is a directory, or # £ otherwise.

24.2.7 glob

[procedure] (glob PATTERN1 ...)

Returns a list of the pathnames of all existing files matching PATTERN1 . . ., which should be strings
containing the usual file-patterns (with * matching zero or more characters and ? matching zero or one
character).

24.2.8 canonical-path

[procedure] (canonical-path NAME)

Returns a canonical path for NAME, which should be a string containing a path-or-filename. The string
returned by canonical-path is OS dependent; it may be quoted and used in a shell on the calling
machine. (Quoting is suggested as shell special characters, including space, are not escaped.) However, all
path separators and prefixes are handled in an OS independent fashion. Any appearance of / below imply \\
is also handled.

24.2.2 current-directory 117

CHICKEN User's Manual - The User's Manual

The prefix for NAME determines what path to prepend. If NAME begins with a "~ /", this prefix is stripped
and the user's home directory is added. If beginning with / or a DRIVE-LETTER:\\ combination, no
additional path is added. Otherwise, the current directory and separator are added. All relative path elements
and duplicate separators are processed and removed. If NAME ends with a / or is empty, the appropriate slash
is appended to the tail.

No directories or files are actually tested for existence; this procedure only canonicalises path syntax.

24.2.9 set-root-directory!

[procedure] (set-root-directory! STRING)

Sets the root directory for the current process to the path given in STRING (using the chroot function). If
the current process has no root permissions, the operation will fail.

24.3 Pipes
24.3.1 call-with-input-pipe

24.3.2 call-with-output-pipe

[procedure] (call-with-input-pipe CMDLINE PROC [MODE])
[procedure] (call-with-output-pipe CMDLINE PROC [MODE])

Call PROC with a single argument: a input- or output port for a pipe connected to the subprocess named in
CMDLINE. If PROC returns normally, the pipe is closed and any result values are returned.

24.3.3 close-input-pipe

24.3.4 close-output-pipe

[procedure] (close-input-pipe PORT)
[procedure] (close-output-pipe PORT)

Closes the pipe given in PORT and waits until the connected subprocess finishes. The exit-status code of the
invoked process is returned.

24.3.5 create-pipe

[procedure] (create-pipe)

The fundamental pipe-creation operator. Calls the C function pipe () and returns 2 values: the
file-descriptors of the input- and output-ends of the pipe.

24.2.8 canonical-path 118

CHICKEN User's Manual - The User's Manual
24.3.6 open-input-pipe
[procedure] (open-input-pipe CMDLINE [MODE])

Spawns a subprocess with the command-line string CMDLINE and returns a port, from which the output of the
process can be read. If MODE is specified, it should be the keyword # : text (the default) or # :binary.

24.3.7 open-output-pipe
[procedure] (open-output-pipe CMDLINE [MODE])

Spawns a subprocess with the command-line string CMDLINE and returns a port. Anything written to that port
is treated as the input for the process. If MODE is specified, it should be the keyword # : text (the default) or
#:binary.

24.3.8 pipe/buf

This variable contains the maximal number of bytes that can be written atomically into a pipe or FIFO.

24.3.9 with-input-from-pipe

24.3.10 with-output-to-pipe

[procedure] (with-input-from-pipe CMDLINE THUNK [MODE])
[procedure] (with-output-to-pipe CMDLINE THUNK [MODE])

Temporarily set the value of current-input-port/current-output-port to a port for a pipe
connected to the subprocess named in CMDLINE and call the procedure THUNK with no arguments. After
THUNK returns normally the pipe is closed and the standard input-/output port is restored to its previous value
and any result values are returned.

(with-output-to-pipe

(lambda ()
(print #<<EOF

%1 IOPSC-1993 %$%Creator: HAYAKAWA Takashi<xXXXxXXXX@XX.XXXXXX.XX.XX>
/C/neg/d/mul/R/rlineto/E/exp/H{{cvx def}repeat}tdef/T/dup/g/gt/r/roll/J/ifelse 8
H/A/copy (z&v4QX&93r9AxYQOZomQalxS2w! '0&vMYad3d6r93rMYvx2dca!D&cjSnjSnjjS30! v&6A
X&55SAxMICD7AJYXTTd62rmxCnTdSSTO0g&12wECST ! & ! J0g&D1!&xM0!J0g!1&544dC2Ac96ra!m&3A
F&&vGoGSNCTO0g&wDmMlvGoS8wpnowpS2wTCpS1Sd70ov7Uk704Qkdw ! &Mv1x1S70ZES3w!J!J!0Q&7185d
7&1x1CS9d9nE4 'k&X&MY7!61!J!x&jdnjdS30dS ! Nemmx1C2wEc!G&150Nx4 !'n&20! j&43r!1U&0777d
1&2AY2A776ddT40S30SnMVCO0VVORRR45E42063rNz&v7UX&UOZF!F!J! [&44ETCnVn!a&l1CDN!Y&O0M
V1c&j2AYdjmMdjjd!o&lr!M) {()T 0 4 3 r put T(/)g{T(9)g{cvn}{cvi}d}{($)g[]T}J
cvx}forall/moveto/p/floor/w/div/S/add 29 H[{[{]setgray fill}for Y}for showpage
EOF
)))

24.4 Fifos

24.3.6 open-input-pipe 119

CHICKEN User's Manual - The User's Manual

24.4.1 create-fifo

[procedure] (create-fifo FILENAME [MODE])

Creates a FIFO with the name FILENAME and the permission bits MODE, which defaults to

[procedure] (+ perm/irwxu perm/irwxg perm/irwxo)

24.4.2 fifo?

[procedure] (fifo? FILENAME)

Returns #t if the file with the name F I LENAME names a FIFO.

24.5 File descriptors and low-level I/0

24.5.1 duplicate-fileno
[procedure] (duplicate-fileno OLD [NEW])

If NEW is given, then the file-descriptor NEW is opened to access the file with the file-descriptor OLD.
Otherwise a fresh file-descriptor accessing the same file as OLD is returned.

24.5.2 file-close

[procedure] (file-close FILENO)

Closes the input/output file with the file-descriptor FILENO.

24.5.3 file-open
[procedure] (file-open FILENAME FLAGS [MODE])

Opens the file specified with the string FILENAME and open-flags FLAGS using the C function open (). On
success a file-descriptor for the opened file is returned. FLAGS should be a bitmask containing one or more of
the open/ . .. values ored together using bitwise—ior (or simply added together). The optional MODE
should be a bitmask composed of one or more permission values like perm/irusr and is only relevant
when a new file is created. The default mode is perm/irwxu | perm/irgrp | perm/iroth.

24.5.4 file-mkstemp

[procedure] (file-mkstemp TEMPLATE-FILENAME)

Create a file based on the given TEMPLATE-FILENAME, in which the six last characters must be XXXXXX.
These will be replaced with a string that makes the filename unique. The file descriptor of the created file and
the generated filename is returned. See the mk st emp (3) manual page for details on how this function
works. The template string given is not modified.

24 .4 1 create-fifo 120

CHICKEN User's Manual - The User's Manual

Example usage:

(let-values (((fd temp-path) (file-mkstemp)))
(let ((temp-port (open-output-file* f£d)))
(format temp-port temp-path)

(close-output-port temp-port)))

24.5.5 file-read

[procedure] (file-read FILENO SIZE [BUFFER])
Reads SIZE bytes from the file with the file-descriptor FILENO. If a string or bytevector is passed in the

optional argument BUFFER, then this string will be destructively modified to contain the read data. This
procedure returns a list with two values: the buffer containing the data and the number of bytes read.

24.5.6 file-select

[procedure] (file-select READFDLIST WRITEFDLIST [TIMEOUT])

Waits until any of the file-descriptors given in the lists READFDLIST and WRITEFDLIST is ready for input
or output, respectively. If the optional argument TIMEOUT is given and not false, then it should specify the
number of seconds after which the wait is to be aborted (the value may be a floating point number). This
procedure returns two values: the lists of file-descriptors ready for input and output, respectively.
READFDLIST and WRITEFDLIST may also by file-descriptors instead of lists. In this case the returned

values are booleans indicating whether input/output is ready by #t or #f otherwise. You can also pass #f as
READFDLIST or WRITEFDLIST argument, which is equivalent to ().

24.5.7 file-write

[procedure] (file-write FILENO BUFFER [SIZE])

Writes the contents of the string or bytevector BUFFER into the file with the file-descriptor F ILENO. If the
optional argument ST ZE is given, then only the specified number of bytes are written.

24.5.8 file-control

[procedure] (file-control FILENO COMMAND [ARGUMENT])

Performs the fcntl operation COMMAND with the given FILENO and optional ARGUMENT. The return value is
meaningful depending on the COMMAND.

24.5.9 open-input-file*

24.5.10 open-output-file*

[procedure] (open-input-file* FILENO [OPENMODE])
[procedure] (open-output-file* FILENO [OPENMODE])

24.5.4 file-mkstemp 121

CHICKEN User's Manual - The User's Manual

Opens file for the file-descriptor FILENO for input or output and returns a port. FILENO should be a positive
exact integer. OPENMODE specifies an additional mode for opening the file (currently only the keyword
#: append is supported, which opens an output-file for appending).

24.5.11 port fileno

[procedure] (port->fileno PORT)

If PORT is a file- or tcp-port, then a file-descriptor is returned for this port. Otherwise an error is signaled.

24.6 Retrieving file attributes
24.6.1 file-access-time
24.6.2 file-change-time

24.6.3 file-modification-time

[procedure] (file-access-time FILE)
[procedure] (file-change-time FILE)
[procedure] (file-modification-time FILE)

Returns time (in seconds) of the last access, modification or change of FILE. FILE may be a filename or a
file-descriptor. If the file does not exist, an error is signaled.

24.6.4 file-stat

[procedure] (file-stat FILE [LINK])

Returns a 13-element vector with the following contents: inode-number, mode (as with
file-permissions), number of hard links, uid of owner (as with £ile-owner), gid of owner, size (as
with file-size) and access-, change- and modification-time (as with file-access—-time,
file-change-time and file-modification-time, device id, device type (for special file inode,
blocksize and blocks allocated. On Windows systems the last 4 values are undefined. If the optional argument
LINK is given and not # £, then the file-statistics vector will be resolved for symbolic links (otherwise
symbolic links are not resolved). Note that for very large files, the file-size value may be an inexact
integer.

24.6.5 file-position

[procedure] (file-position FILE)

Returns the current file position of F ILE, which should be a port or a file-descriptor.

24.5.10 open-output-file* 122

CHICKEN User's Manual - The User's Manual
24.6.6 file-size

[procedure] (file-size FILENAME)

Returns the size of the file designated by FILE. FILE may be a filename or a file-descriptor. If the file does
not exist, an error is signaled. Note that for very large files, fi1le-size may return an inexact integer.

24.6.7 regular-file?

[procedure] (regular-file? FILENAME)

Returns true, if FILENAME names a regular file (not a directory or symbolic link).

24.6.8 file-owner

[procedure] (file-owner FILE)

Returns the user-id of FILE. FILE may be a filename or a file-descriptor.

24.6.9 file-permissions

[procedure] (file-permissions FILE)

Returns the permission bits for FILE. You can test this value by performing bitwise operations on the result
and the perm/ . . . values. FILE may be a filename or a file-descriptor.

24.6.10 file-read-access?

24.6.11 file-write-access?

24.6.12 file-execute-access?

[procedure] (file-read-access? FILENAME)
[procedure] (file-write-access? FILENAME)
[procedure] (file-execute-access? FILENAME)

These procedures return #t if the current user has read, write or execute permissions on the file named
FILENAME.

24.6.13 stat-regular?

24.6.14 stat-directory?

24.6.6 file-size 123

CHICKEN User's Manual - The User's Manual

24.6.15 stat-char-device?

24.6.16 stat-block-device?

24.6.17 stat-fifo?

24.6.18 stat-symlink?

24.6.19 stat-socket?

[procedure stat-regular? FILENAME)
[procedure stat-directory? FILENAME)
[procedure stat-char—-device? FILENAME)

I«
I«
I«
[procedure] (stat-block-device? FILENAME)
I«
I«
I«

[procedure stat-fifo? FILENAME)
[procedure stat-symlink? FILENAME)
[procedure stat-socket? FILENAME)

These procedures return #t if the FILENAME given is of the appropriate type.

24.7 Changing file attributes

24.7 1 file-truncate

[procedure] (file-truncate FILE OFFSET)

Truncates the file FILE to the length OFFSET, which should be an integer. If the file-size is smaller or equal
to OFF SET then nothing is done. FILE should be a filename or a file-descriptor.

24.7.2 set-file-position!

[procedure] (set-file-position! FILE POSITION [WHENCE])
[procedure] (set! (file-position FILE) POSITION)

Sets the current read/write position of FILE to POSITION, which should be an exact integer. FILE should
be a port or a file-descriptor. WHENCE specifies how the position is to interpreted and should be one of the

values seek/set, seek/cur and seek/end. It defaults to seek/set.

Exceptions: (exn bounds), (exn i/o file)

24.7.3 change-file-mode
[procedure] (change-file-mode FILENAME MODE)

Changes the current file mode of the file named FILENAME to MODE using the chmod () system call. The
perm/ . .. variables contain the various permission bits and can be combinded with the bitwise-ior

24.6.15 stat-char-device? 124

CHICKEN User's Manual - The User's Manual

procedure.

24.7.4 change-file-owner
[procedure] (change-file-owner FILENAME UID GID)

Changes the owner information of the file named F ILENAME to the user- and group-ids UID and GID (which
should be exact integers) using the chown () system call.

24.8 Processes

24.8.1 current-process-id

[procedure] (current-process-id)

Returns the process ID of the current process.

24.8.2 parent-process-id

[procedure] (parent-process—id)

Returns the process ID of the parent of the current process.

24.8.3 process-group-id
[procedure] (process—-group—-id PID)

Returns the process group ID of the process specified by PID.

24.8.4 process-execute
[procedure] (process-execute PATHNAME [ARGUMENT-LIST [ENVIRONMENT-LIST]])

Creates a new child process and replaces the running process with it using the C library function

execvp (3) . If the optional argument ARGUMENT-LIST is given, then it should contain a list of strings
which are passed as arguments to the subprocess. If the optional argument ENVIRONMENT-LIST is
supplied, then the library function execve (2) is used, and the environment passed in
ENVIRONMENT-LIST (which should be of the form ("<NAME>=<VALUE>" ...) is given to the
invoked process. Note that execvp (3) respects the current setting of the PATH environment variable while
execve (3) does not.

24.8.5 process-fork

[procedure] (process-fork [THUNK])

Creates a new child process with the UNIX system call fork (). Returns either the PID of the child process

24.7.3 change-file-mode 125

CHICKEN User's Manual - The User's Manual

or 0. If THUNK is given, then the child process calls it as a procedure with no arguments and terminates.

24.8.6 process-run

[procedure] (process—-run COMMANDLINE])
[procedure] (process-run COMMAND ARGUMENT-LIST)

Creates a new child process. The PID of the new process is returned.

® The single parameter version passes the COMMANDLINE to the system shell, so usual argument
expansion can take place.
® The multiple parameter version directly invokes the COMMAND with the ARGUMENT-LIST.

24.8.7 process-signal

[procedure] (process-signal PID [SIGNAL])

Sends SIGNAL to the process with the id PID using the UNIX system call ki11 (). SIGNAL defaults to the
value of the variable signal/term.

24.8.8 process-wait
[procedure] (process-wait [PID [NOHANG]])

Suspends the current process until the child process with the id PID has terminated using the UNIX system
call waitpid (). If PID is not given, then this procedure waits for any child process. If NOHANG is given
and not # £ then the current process is not suspended. This procedure returns three values:

e PID or (), if NOHANG is true and the child process has not terminated yet.

e it if the process exited normally or # £ otherwise.

e cither the exit status, if the process terminated normally or the signal number that terminated/stopped
the process.

24.8.9 process

[procedure] (process COMMANDLINE)
[procedure] (process COMMAND ARGUMENT-LIST [ENVIRONMENT-LIST])

Creates a subprocess and returns three values: an input port from which data written by the sub-process can be
read, an output port from which any data written to will be received as input in the sub-process and the
process-id of the started sub-process. Blocking reads and writes to or from the ports returned by process
only block the current thread, not other threads executing concurrently.

¢ The single parameter version passes the string COMMANDLINE to the host-system's shell that is
invoked as a subprocess.

® The multiple parameter version directly invokes the COMMAND as a subprocess. The
ARGUMENT-LIST is directly passed, as is ENVIRONMENT-LIST.

Not using the shell may be preferrable for security reasons.

24.8.5 process-fork 126

CHICKEN User's Manual - The User's Manual
24.8.10 process”

[procedure] (process* COMMANDLINE)
[procedure] (process* COMMAND ARGUMENT-LIST [ENVIRONMENT-LIST])

Like process but returns 4 values: an input port from which data written by the sub-process can be read, an

output port from which any data written to will be received as input in the sub-process, the process-id of the
started sub-process, and an input port from which data written by the sub-process to stderr can be read.

24.8.11 sleep

[procedure] (sleep SECONDS)

Puts the process to sleep for SECONDS. Returns either O if the time has completely elapsed, or the number of
remaining seconds, if a signal occurred.

24.8.12 create-session

[procedure] (create-session)

Creates a new session if the calling process is not a process group leader and returns the session ID.

24.9 Hard and symbolic links

24.9.1 symbolic-link?

[procedure] (symbolic-1ink? FILENAME)

Returns true, if FILENAME names a symbolic link.

24.9.2 create-symbolic-link
[procedure] (create-symbolic-1link OLDNAME NEWNAME)

Creates a symbolic link with the filename NEWNAME that points to the file named OLDNAME.

24.9.3 read-symbolic-link
[procedure] (read-symbolic-1link FILENAME)

Returns the filename to which the symbolic link F I LENAME points.

24.9.4 file-link

[procedure] (file-1link OLDNAME NEWNAME)

24.8.10 process* 127

CHICKEN User's Manual - The User's Manual

Creates a hard link from OLDNAME to NEWNAME (both strings).

24.10 Retrieving user & group information

24.10.1 current-user-id

[procedure] (current-user-id)
[setter] (set! (current—-user-id) UID)

Get or set the real user-id of the current process.

24.10.2 current-effective-user-id

[procedure] (current-effective-user-id)
[setter] (set! (current-effective-user-id) UID)

Get or set the effective user-id of the current process.

24.10.3 user-information

[procedure] (user-information USER [AS-VECTOR])

If USER specifes a valid username (as a string) or user ID, then the user database is consulted and a list of 7
values are returned: the user-name, the encrypted password, the user ID, the group ID, a user-specific string,

the home directory and the default shell. When AS-VECTOR is #t a vector of 7 elements is returned instead
of a list. If no user with this name or id then # f is returned.

24.10.4 current-group-id

[procedure] (current-group-id)
[setter] (set! (current-group-id) GID)

Get or set the real group-id of the current process.

24.10.5 current-effective-group-id

[procedure] (current-effective-group-id)
[setter] (set! (current-effective-group-id) GID)

Get or set the effective group-id of the current process. ID can be found, then #£ is returned.

24.10.6 group-information
[procedure] (group-information GROUP)

If GROUP specifies a valid group-name or group-id, then this procedure returns a list of four values: the
group-name, the encrypted group password, the group ID and a list of the names of all group members. If no

24.9.4 file-link 128

CHICKEN User's Manual - The User's Manual

group with the given name or ID exists, then # £ is returned.

24.10.7 get-groups
[procedure] (get—-groups)

Returns a list with the supplementary group IDs of the current user.

24.11 Changing user & group information

24.11.1 set-groups!
[procedure] (set-groups! GIDLIST)
Sets the supplementrary group IDs of the current user to the IDs given in the list GIDLIST.

Only the superuser may invoke this procedure.

24.11.2 initialize-groups
[procedure] (initialize-groups USERNAME BASEGID)

Sets the supplementrary group IDs of the current user to the IDs from the user with name USERNAME (a
string), including BASEGID.

Only the superuser may invoke this procedure.

24.11.3 set-process-group-id!

[procedure] (set-process—group-id! PID PGID)
[setter] (set! (process—-group-id PID) PGID)

Sets the process group ID of the process specifed by PID to PGID.

24.12 Record locking

24.12.1 file-lock

[procedure] (file-lock PORT [START [LEN]])

Locks the file associated with PORT for reading or writing (according to whether PORT is an input- or
output-port). START specifies the starting position in the file to be locked and defaults to 0. LEN specifies the
length of the portion to be locked and defaults to #t, which means the complete file. file—1lock returns a
lock-object.

24.10.6 group-information 129

CHICKEN User's Manual - The User's Manual
24.12.2 file-lock/blocking

[procedure] (file-lock/blocking PORT [START [LEN]])

Similar to £ile-1ock, but if a lock is held on the file, the current process blocks (including all threads) until
the lock is released.

24.12.3 file-test-lock

[procedure] (file-test-lock PORT [START [LEN]])

Tests whether the file associated with PORT is locked for reading or writing (according to whether PORT is an
input- or output-port) and returns either # £ or the process-id of the locking process.

24.12.4 file-unlock

[procedure] (file-unlock LOCK)

Unlocks the previously locked portion of a file given in LOCK.

24.13 Signal handling

24.13.1 set-alarm!

[procedure] (set-alarm! SECONDS)

Sets an internal timer to raise the signal/alrm after SECONDS are elapsed. You can use the
set-signal-handler! procedure to write a handler for this signal.

24.13.2 set-signal-handler!

[procedure] (set-signal-handler! SIGNUM PROC)

Establishes the procedure of one argument PROC as the handler for the signal with the code STGNUM. PROC
is called with the signal number as its sole argument. If the argument PROC is # £ then any signal handler will

be removed.

Note that is is unspecified in which thread of execution the signal handler will be invoked.

24.13.3 signal-handler

[procedure] (signal-handler SIGNUM)

Returns the signal handler for the code SIGNUM or #£.

24.12.2 file-lock/blocking 130

CHICKEN User's Manual - The User's Manual
24.13.4 set-signal-mask!

[procedure] (set-signal-mask! SIGLIST)

Sets the signal mask of the current process to block all signals given in the list SIGLIST. Signals masked in
that way will not be delivered to the current process.

24.13.5 signal-mask

[procedure] (signal-mask)

Returns the signal mask of the current process.

24.13.6 signal-masked?

[procedure] (signal-masked? SIGNUM)

Returns whether the signal for the code SIGNUM is currently masked.

24.13.7 signal-mask!

[procedure] (signal-mask! SIGNUM)

Masks (blocks) the signal for the code STGNUM.

24.13.8 signal-unmask!

[procedure] (signal-unmask! SIGNUM)

Unmasks (unblocks) the signal for the code STGNUM.

24.13.9 signal/term

24.13.10 signal/kill

24.13.11 signal/int

24.13.12 signal/hup

24.13.13 signal/fpe

24.13.4 set-signal-mask! 131

CHICKEN User's Manual - The User's Manual

24.13.14 signal/ill

24.13.15 signal/segv

24.13.16 signal/abrt

24.13.17 signal/trap

24.13.18 signal/quit

24.13.19 signal/alrm

24.13.20 signal/vtalrm

24.13.21 signal/prof

24.13.22 signal/io

24.13.23 signal/urg

24.13.24 signal/chid

24.13.25 signal/cont

24.13.26 signal/stop

24.13.27 signal/tstp

24.13.28 signal/pipe

24.13.29 signal/xcpu

24.13.14 signal/ill

132

CHICKEN User's Manual - The User's Manual
24.13.30 signal/xfsz

24.13.31 signal/usri
24.13.32 signal/usr2

24.13.33 signal/winch

These variables contain signal codes for use with process—-signal, set-signal-handler!,
signal-handler, signal-masked?, signal-mask!,or signal-unmask!.

24.14 Environment access

24.14.1 current-environment

[procedure] (current-environment)

Returns a association list of the environment variables and their current values.

24.14.2 setenv

[procedure] (setenv VARIABLE VALUE)

Sets the environment variable named VARIABLE to VALUE. Both arguments should be strings. If the variable
is not defined in the environment, a new definition is created.

24.14.3 unsetenv
[procedure] (unsetenv VARIABLE)

Removes the definition of the environment variable VARIABLE from the environment of the current process.
If the variable is not defined, nothing happens.

24.15 Memory mapped I/O

24.15.1 memory-mapped-file?

[pocedure] (memory-mapped-file? X)

Returns #t, if X is an object representing a memory mapped file, or # £ otherwise.

24.13.30 signal/xfsz 133

CHICKEN User's Manual - The User's Manual
24.15.2 map-file-to-memory
[procedure] (map-file-to-memory ADDRESS LEN PROTECTION FLAG FILENO [OFFSET])

Maps a section of a file to memory using the C function mmap () . ADDRESS should be a foreign pointer
object or # £; LEN specifies the size of the section to be mapped; PROTECT ION should be one or more of the
flags prot/read, prot/write, prot/exec or prot/none bitwise-iored together; FLAG should
be one or more of the flags map/fixed, map/shared, map/private, map/anonymous or
map/file; FILENO should be the file-descriptor of the mapped file. The optional argument OFF SET gives
the offset of the section of the file to be mapped and defaults to 0. This procedure returns an object
representing the mapped file section. The procedure move-memory ! can be used to access the mapped
memory.

24.15.3 memory-mapped-file-pointer

[procedure] (memory-mapped-file-pointer MMAP)

Returns a machine pointer to the start of the memory region to which the file is mapped.

24.15.4 unmap-file-from-memory

[procedure] (unmap-file-from-memory MMAP [LEN])

Unmaps the section of a file mapped to memory using the C function munmap () . MMAP should be a mapped
file as returned by the procedure map—file—-to-memory. The optional argument LEN specifies the length
of the section to be unmapped and defaults to the complete length given when the file was mapped.

24.16 Date and time routines

24.16.1 seconds local-time

[procedure] (seconds->local-time SECONDS)

Converts the time value represented in SECONDS into a ten-element vector (T IME—-VECTOR) of the form
(seconds minutes hours mday month year wday yday dstflag timezone), inthe
following format:

seconds (0)

the number of seconds after the minute (0 - 59)
minutes (1)

the number of minutes after the hour (0 - 59)

hours (2)

the number of hours past midnight (0 - 23)
mday (3)

the day of the month (1 - 31)
month (4)

the number of months since january (0 - 11)
year (5)

the number of years since 1900
wday (6)

24.15.2 map-file-to-memory 134

CHICKEN User's Manual - The User's Manual

the number of days since Sunday (0 - 6)
yday (7)
the number of days since January 1 (0 - 365)
dstflag (8)
a flag that is true if Daylight Saving Time is in effect at the time described.
timezone (9)
the difference between UTC and the latest local standard time, in seconds west of UTC.

24.16.2 local-time seconds
[procedure] (local-time->seconds TIME-VECTOR)

Converts the TIME-VECTOR representing the time value relative to the current timezone into the number of
seconds since the first of January, 1970 UTC.

24.16.3 local-timezone-abbreviation

[procedure] (local-timezone-abbreviation)

Returns the abbreviation for the local timezone as a string.

24.16.4 seconds string

[procedure] (seconds->string SECONDS)

Converts the local time represented in SECONDS into a string of the form "Tue May 21 13:46:22
1991".

24.16.5 seconds utc-time

[procedure] (seconds->utc-time SECONDS)

Similar to seconds->1ocal-time, but interprets SECONDS as UTC time.

24.16.6 utc-time seconds
[procedure] (utc-time->seconds TIME-VECTOR)

Converts the TIME-VECTOR representing the UTC time value into the number of seconds since the first of
January, 1970 UTC.

24.16.7 time string

[procedure] (time->string TIME-VECTOR [FORMAT-STRING])

Converts the TIME-VECTOR into a string of the form "Tue May 21 13:46:22 1991".

24.16.1 seconds local-time 135

CHICKEN User's Manual - The User's Manual

When the optional FORMAT-STRING is supplied the time is formatted using the C library routine
strftime.

24.16.8 string time

[procedure] (string->time TIME-STRING [FORMAT-STRING])
Parse the TIME-STRING using the C library routine st rpt ime and return a TIME-VECTOR.

Not available for the Windows platform.

24.17 Raw exit

24.17.1 _exit

[procedure] (_exit [CODE])

Exits the current process without flushing any buffered output (using the C function _exit). Note that the
exit-handler is not called when this procedure is invoked. The optional return-code CODE defaults to 0.

24.18 ERRNO values

24.18.1 errno/perm

24.18.2 errno/noent

24.18.3 errno/srch

24.18.4 errno/intr

24.18.5 errno/io

24.18.6 errno/noexec

24.18.7 errno/badf

24.16.7 time string 136

CHICKEN User's Manual - The User's Manual
24.18.8 errno/child

24.18.9 errno/nomem

24.18.10 errno/acces

24.18.11 errno/fault

24.18.12 errno/busy

24.18.13 errno/notdir

24.18.14 errno/isdir

24.18.15 errno/inval

24.18.16 errno/mfile

24.18.17 errno/nospc

24.18.18 errno/spipe

24.18.19 errno/pipe

24.18.20 errno/again

24.18.21 errno/rofs

24.18.22 errno/exist

24.18.23 errno/wouldblock

These variables contain error codes as returned by errno.

24.18.8 errno/child 137

CHICKEN User's Manual - The User's Manual

24.19 Finding files

24.19.1 find-files

[procedure] (find-files DIRECTORY PREDICATE [ACTION [IDENTITY [LIMIT]]])

Recursively traverses the contents of DIRECTORY (which should be a string) and invokes the procedure
ACTION for all files in which the procedure PREDICATE is true. PREDICATE may me a procedure of one
argument or a regular-expression string. ACTION should be a procedure of two arguments: the currently
encountered file and the result of the previous invocation of ACTION, or, if this is the first invocation, the
value of IDENTITY. ACTION defaults to cons, IDENTITY defaults to (). LIMIT should be a procedure
of one argument that is called for each nested directory and which should return true, if that directory is to be
traversed recursively. LIMIT may also be an exact integer that gives the maximum recursion depth. For
example, a depth of 0 means that only files in the top-level, specified directory are to be traversed. In this
case, all nested directories are ignored. LIMIT may also be #£f (the default), which is equivalent to
(constantly #t).

Note that ACTION is called with the full pathname of each file, including the directory prefix.

24.20 Getting the hostname and system information

24.20.1 get-host-name

[procedure] (get-host-name)

Returns the hostname of the machine that this process is running on.

24.20.2 system-information

[procedure] (system—-information)

Invokes the UNIX system call uname () and returns a list of 5 values: system-name, node-name, OS release,
OS version and machine.

24.21 Setting the file buffering mode

24.21.1 set-buffering-mode!
[procedure] (set-buffering-mode! PORT MODE [BUFSIZE])

Sets the buffering-mode for the file associated with PORT to MODE, which should be one of the keywords
#:full, #:1ineor #:none. If BUFSIZE is specified it determines the size of the buffer to be used (if

any).

24.19 Finding files 138

CHICKEN User's Manual - The User's Manual

24.22 Terminal ports

24.22.1 terminal-name

[procedure] (terminal-name PORT)

Returns the name of the terminal that is connected to PORT.

24.22.2 terminal-port?

[procedure] (terminal-port? PORT)

Returns #t if PORT is connected to a terminal and # £ otherwise.

24.23 How Scheme procedures relate to UNIX C functions

change-directory
chdir
change-file-mode
chmod
change-file-owner
chown
create-directory
mkdir
create-fifo
mkfifo
create-pipe
pipe
create—-session
setsid
create-symbolic-1ink
link
current-directory
curdir
current-effective—-groupd-id
getegid
current-effective-user-id
geteuid
current-group-id
getgid
current-parent-id
getppid
current-process—id
getpid
current-user-id
getuid
delete-directory
rmdir
duplicate-fileno
dup/dup2

24.22 Terminal ports

139

CHICKEN User's Manual - The User's Manual

_exit

_exit
file-close

close
file—access-time

stat
file-change-time

stat
file-modification-time

stat
file—-execute—access?

access
file-open

open
file-lock

fcntl
file-position

ftell/lseek
file-read

read
file-read-access?

access
file-select

select
file-control

fcntl
file-stat

stat
file—-test-lock

fcntl
file—-truncate

truncate/ftruncate
file—-unlock

fcntl
file-write
write
file-write-access?
access
get—-groups
getgroups
get—host—name
gethostname
initialize—-groups
initgroups
local-time->seconds
mktime
local-timezone—-abbreviation
localtime
map-file-to-memory
mmap
open—-input-file*
fdopen
open-output-file*
fdopen

24.23 How Scheme procedures relate to UNIX C functions

140

CHICKEN User's Manual - The User's Manual

open—-input-pipe
popen
open-output-pipe
popen
port->fileno
fileno
process-—execute
execvp
process—fork
fork
process—group—-id
getpgid
process—-signal
kill
process-wait
waitpid
close—-input-pipe
pclose
close-output-pipe
pclose
read-symbolic-1link
readlink
seconds—->local-time
localtime
seconds->string
ctime
seconds—->utc—time
gmt ime
set—-alarm!
alarm
set-buffering-mode!
setvbuf
set—-file-position!
fseek/seek
set—-groups!
setgroups
set-signal-mask!
sigprocmask
set—group—-id!
setgid
set-process—-group-id!
setpgid
set-user—-id!
setuid
set-root-directory!
chroot
setenv
setenv/putenv
sleep
sleep
system—-information
uname
terminal—-name
ttyname

24.23 How Scheme procedures relate to UNIX C functions

141

CHICKEN User's Manual - The User's Manual

terminal-port?

isatty
time->string
asctime
unsetenv
putenv
unmap-file-from-memory
munmap
user—-information
getpwnam/getpwuid
utc-time->seconds
timegm

24.24 Windows specific notes

Use of UTF8 encoded strings is for pathnames is not supported. Windows uses a 16-bit UNICODE encoding
with special system calls for wide-character support. Only single-byte string encoding can be used.

24.24.1 Procedure Changes

Exceptions to the above procedure definitions.

[procedure] (create-pipe [MODE])

The optional parameter MODE, default open/binary | open/noinherit. This canbe open/binary
or open/text, optionally or'ed with open/noinherit.

[procedure] (process-wait [PID [NOHANG]])

process-wait always returns #t for a terminated process and only the exit status is available. (Windows
does not provide signals as an interprocess communication method.)

[procedure] (process—-execute PATHNAME [ARGUMENT-LIST [ENVIRONMENT-LIST [EXACT-FLAG]]])
[procedure] (process COMMAND ARGUMENT-LIST [ENVIRONMENT-LIST [EXACT-FLAG]])
[procedure] (process* COMMAND ARGUMENT-LIST [ENVIRONMENT-LIST [EXACT-FLAG]])

The optional parameter EXACT-FLAG, default #£. When # £ any argument string with embedded whitespace
will be wrapped in quotes. When #t no such wrapping occurs.

24.24.2 Unsupported Definitions

The following definitions are not supported for native Windows builds (compiled with the Microsoft tools or
with MinGW):

open/noctty open/nonblock open/fsync open/sync
perm/isvtx perm/isuid perm/isgid
file-select file-control

signal/... (except signal/term, signal/int, signal/fpe, signal/ill, signal/segv, signal/abrt,
set-signal-mask! signal-mask signal-masked? signal-mask! signal-unmask!

user—-information group-information get-groups set-groups! initialize-groups
errno/wouldblock

change-file-owner
current-user-id current-group-id current-effective-user-id current-effective-groupd-id

24.24 Windows specific notes 142

sig

CHICKEN User's Manual - The User's Manual

set-user-id! set-group-id!

create-session

process—group—-id set-process-group-id!
create-symbolic-link read-symbolic-1link

file-truncate

file-lock file-lock/blocking file-unlock file-test-lock
create-fifo fifo?

prot/...

map/. ..

map-file-to-memory unmap-file-from-memory memory-mapped-file-pointer memory-mapped-file?
set—-alarm!

terminal-port? terminal-name

process—-fork process-signal

parent-process—id

set-root-directory!

utc-time->seconds

string->time

24.24.3 Additional Definitions

Only available for Windows
® open/noinherit
This variable is a mode value for create—-pipe. Useful when spawning a child process.

® spawn/overlay
® spawn/wait

® spawn/nowait
® spawn/nowaito
e spawn/detach

These variables contains special flags that specify the exact semantics of process-spawn:
spawn/overlay replaces the current process with the new one. spawn/wait suspends execution of the
current process until the spawned process returns. spawn/nowait does the opposite (spawn/nowaito is
identical, according to the Microsoft documentation) and runs the process asynchronously. spawn/detach
runs the new process in the background, without being attached to a console.

24.24.4 process-spawn

[procedure] (process-spawn MODE COMMAND [ARGUMENT-LIST [ENVIRONMENT-LIST [EXACT-FLAG]]])
Creates and runs a new process with the given COMMAND filename and the optional ARGUMENT-LIST and
ENVIRONMENT-LIST. MODE specifies how exactly the process should be executed and must be one or more
of the spawn/ . .. flags defined above.

The EXACT-FLAG, default # £, controls quote-wrapping of argument strings. When #t quote-wrapping is not
performed.

Returns:
¢ the exit status when synchronous

e the PID when asynchronous
¢ -1 when failure

24.24.2 Unsupported Definitions 143

CHICKEN User's Manual - The User's Manual

Previous: Unit srfi-18

Next: Unit utils

24.24 .4 process-spawn 144

25 Unit utils

This unit contains file/pathname oriented procedures, apropos, plus acts as a "grab bag" for procedures
without a good home, and which don't have to be available by default (as compared to the extras unit).

This unit uses the extras and regex units.

25.1 Environment Query

25.1.1 apropos
[procedure] (apropos SYMBOL-PATTERN [ENVIRONMENT] [#:MACROS?])

Displays symbols & type matching SYMBOL-PATTERN in the ENVIRONMENT on the
(current-output-port).

SYMBOL-PATTERN

A symbol, string, or regex. When symbol or string substring matching is performed.
ENVIRONMENT

An environment. When missing the (interaction-environment) is assumed.

:MACROS?
Keyword argument. A boolean. Include macro symbols? When missing # £ is assumed.

25.1.2 apropos-list
[procedure] (apropos—list SYMBOL-PATTERN [ENVIRONMENT] [#:MACROS?])

Like apropos but returns a list of matching symbols.

25.2 Pathname operations

25.2.1 absolute-pathname?
[procedure] (absolute-pathname? PATHNAME)

Returns #t if the string PATHNAME names an absolute pathname, and returns # £ otherwise.

25.2.2 decompose-pathname

[procedure] (decompose-pathname PATHNAME)

Returns three values: the directory-, filename- and extension-components of the file named by the string
PATHNAME. For any component that is not contained in PATHNAME, # £ is returned.

25 Unit utils 145

http://galinha.ucpel.tche.br/Unit extras

CHICKEN User's Manual - The User's Manual

25.2.3 make-pathname

25.2.4 make-absolute-pathname

[procedure] (make-pathname DIRECTORY FILENAME [EXTENSION [SEPARATOR]])
[procedure] (make-absolute-pathname DIRECTORY FILENAME [EXTENSION [SEPARATOR]])

Returns a string that names the file with the components DIRECTORY, FILENAME and (optionally)
EXTENSION with SEPARATOR being the directory separation indicator (usually / on UNIX systems and \
on Windows, defaulting to whatever platform this is running on). DIRECTORY can be #f (meaning no
directory component), a string or a list of strings. FILENAME and EXTENSION should be strings or #£.
make-absolute-pathname returns always an absolute pathname.

25.2.5 pathname-directory

[procedure] (pathname-directory PATHNAME)

25.2.6 pathname-file

[procedure] (pathname-file PATHNAME)

25.2.7 pathname-extension

[procedure] (pathname-extension PATHNAME)

Accessors for the components of PATHNAME. If the pathname does not contain the accessed component, then
#£ is returned.

25.2.8 pathname-replace-directory

[procedure] (pathname-replace-directory PATHNAME DIRECTORY)

25.2.9 pathname-replace-file

[procedure] (pathname-replace-file PATHNAME FILENAME)

25.2.10 pathname-replace-extension
[procedure] (pathname-replace-extension PATHNAME EXTENSION)

Return a new pathname with the specified component of PATHNAME replaced by a new value.

25.2.11 pathname-strip-directory

[procedure] (pathname-strip-directory PATHNAME)

25.2.3 make-pathname 146

CHICKEN User's Manual - The User's Manual
25.2.12 pathname-strip-extension
[procedure] (pathname-strip-extension PATHNAME)

Return a new pathname with the specified component of PATHNAME stripped.

25.2.13 directory-null?

[procedure] (directory-null? DIRECTORY)
Does the DIRECTORY consist only of path separators and the period?

DIRECTORY may be a string or a list of strings.

25.3 Temporary files

25.3.1 create-temporary-file

[procedure] (create-temporary-file [EXTENSION])

Creates an empty temporary file and returns its pathname. If EXTENSION is not given, then . tmp is used. If
the environment variable TMPDIR, TEMP or TMP is set, then the pathname names a file in that directory.

25.4 Deleting a file without signalling an error

25.4.1 delete-file*

[procedure] (delete-file* FILENAME)

If the file FILENAME exists, it is deleted and #t is returned. If the file does not exist, nothing happens and # £
is returned.

25.5 Iterating over input lines and files

25.5.1 for-each-line
[procedure] (for-each-line PROCEDURE [PORT])

Calls PROCEDURE for each line read from PORT (which defaults to the value of
(current-input-port). The argument passed to PROCEDURE is a string with the contents of the line,
excluding any line-terminators. When all input has been read from the port, for—-each-1ine returns some
unspecified value.

25.2.12 pathname-strip-extension 147

CHICKEN User's Manual - The User's Manual

25.5.2 for-each-argv-line

[procedure] (for-each-argv-line PROCEDURE)

Opens each file listed on the command line in order, passing one line at a time into PROCEDURE. The
filename - is interpreted as (current-input-port). If no arguments are given on the command line it
again uses the value of (current-input-port). During execution of PROCEDURE, the current input

port will be correctly bound to the current input source.

This code will act as a simple Unix cat(1) command:

(for-each-argv-line print)

25.5.3 port-for-each
[procedure] (port-for-each FN THUNK)

Apply FN to successive results of calling the zero argument procedure THUNK until it returns # ! eof,
discarding the results.

25.5.4 port-map
[procedure] (port-map FN THUNK)

Apply FN to successive results of calling the zero argument procedure THUNK until it returns # ! eof,
returning a list of the collected results.

25.5.5 port-fold

[procedure] (port-map FN ACC THUNK)
Apply FN to successive results of calling the zero argument procedure THUNK, passing the ACC value as the

second argument. The FN result becomes the new ACC value. When THUNK returns # ! eof, the last FN result
is returned.

25.6 Executing shell commands with formatstring and error
checking

25.6.1 system*
[procedure] (system* FORMATSTRING ARGUMENT1 ...)

Similar to (system (sprintf FORMATSTRING ARGUMENT1 ...)), butsignals an error if the
invoked program should return a nonzero exit status.

25.5.2 for-each-argv-line 148

CHICKEN User's Manual - The User's Manual

25.7 Reading a file's contents

25.7.1 read-all

[procedure] (read-all [FILE-OR-PORT])
If FILE-OR-PORT is a string, then this procedure returns the contents of the file as a string. If
FILE-OR-PORT is a port, all remaining input is read and returned as a string. The port is not closed. If no

argument is provided, input will be read from the port that is the current value of
(current-input-port).

25.8 Funky ports

25.8.1 make-broadcast-port

[procedure] (make-broadcast-port PORT ...)

Returns a custom output port that emits everything written into it to the ports given as PORT Closing
the broadcast port does not close any of the argument ports.

25.8.2 make-concatenated-port

[procedure] (make-concatenated-port PORT1 PORT2 ...)

Returns a custom input port that reads its input from PORT1, until it is empty, then from PORT2 and so on.
Closing the concatenated port does not close any of the argument ports.

25.9 Miscellaneous handy things

25.9.1 shift! DEPRECATED

[procedure] (shift! LIST [DEFAULT])
Returns the car of LIST (or DEFAULT if LIST is empty) and replaces the car of LIST with it's cadr and the
cdr with the cddr. If DEFAULT is not given, and the list is empty, #£ is returned. An example might be

clearer, here:

(define 1lst '(1 2 3))
(shift! 1st) ==> 1, 1lst is now (2 3)

The list must contain at least 2 elements.

25.9.2 unshift! DEPRECATED

[procedure] (unshift! X PAIR)

25.7 Reading a file's contents 149

CHICKEN User's Manual - The User's Manual
Sets the car of PAIR to X and the cdr to its cddr. Returns PAIR:

(define 1lst ' (2))
(unshift! 99 1st)

; 1st is now (99 2)
Previous: Unit posix

Next: Unit tcp

25.9.2 unshift! DEPRECATED 150

26 Unit tcp

This unit provides basic facilities for communicating over TCP sockets. The socket interface should be mostly
compatible to the one found in PLT Scheme.

This unit uses the extras unit.

All errors related to failing network operations will raise a condition of kind (exn i/o0 network).

26.1 tcp-listen
[procedure] (tcp-listen TCPPORT [BACKLOG [HOST]])
Creates and returns a TCP listener object that listens for connections on TCPPORT, which should be an exact

integer. BACKLOG specifies the number of maximally pending connections (and defaults to 4). If the optional
argument HOST is given and not # £, then only incoming connections for the given host (or IP) are accepted.

26.2 tcp-listener?

[procedure] (tcp-listener? X)

Returns #t if X is a TCP listener object, or # £ otherwise.

26.3 tcp-close
[procedure] (tcp-close LISTENER)

Reclaims any resources associated with LISTENER.

26.4 tcp-accept

[procedure] (tcp-accept LISTENER)

Waits until a connection is established on the port on which LISTENER is listening and returns two values:
an input- and output-port that can be used to communicate with the remote process. The current value of
tcp-accept-timeout is used to determine the maximal number of milliseconds (if any) to wait until a
connection is established. When a client connects any read- and write-operations on the returned ports will use
the current values (at the time of the connection) of tcp—-read-timeout and tcp-write-timeout,
respectively, to determine the maximal number of milliseconds to wait for input/output before a timeout error

is signalled.

Note: this operation and any I/O on the ports returned will not block other running threads.

26.5 tcp-accept-ready?

[procedure] (tcp-accept-ready? LISTENER)

26 Unit tcp 151

CHICKEN User's Manual - The User's Manual

Returns #t if there are any connections pending on LISTENER, or #f otherwise.

26.6 tcp-listener-port

[procedure] (tcp-listener-port LISTENER)

Returns the port number assigned to LISTENER (If you pass 0 to tcp-11isten, then the system will choose
a port-number for you).

26.7 tcp-listener-fileno

[procedure] (tcp-listener-fileno LISTENER)

Returns the file-descriptor associated with LISTENER.

26.8 tcp-connect

[procedure] (tcp-connect HOSTNAME [TCPPORT])

Establishes a client-side TCP connection to the machine with the name HOSTNAME (a string) at TCPPORT
(an exact integer) and returns two values: an input- and output-port for communicating with the remote
process. The current value of t cp-connect-timeout is used to determine the maximal number of
milliseconds (if any) to wait until the connection is established. When the connection takes place any read-
and write-operations on the returned ports will use the current values (at the time of the call to
tcp-connect) of tcp-read-timeout and tcp-write—timeout, respectively, to determine the
maximal number of milliseconds to wait for input/output before a timeout error is signalled.

If the TCPPORT is omitted, the port is parsed from the HOSTNAME string. The format expected is
HOSTNAME : PORT. The PORT can either be a string representation of an integer or a service name which is

translated to an integer using the POSIX function get servbyname.

Note: any I/O on the ports returned will not block other running threads.

26.9 tcp-addresses

[procedure] (tcp-addresses PORT)
Returns two values for the input- or output-port PORT (which should be a port returned by either

tcp-accept or tecp—connect): the IP address of the local and the remote machine that are connected
over the socket associated with PORT. The returned addresses are strings in XXX . XXX . XXX . XXX notation.

26.10 tcp-port-numbers

[procedure] (tcp-port-numbers PORT)

Returns two values for the input- or output-port PORT (which should be a port returned by either
tcp-accept or tcp—-connect): the TCP port numbers of the local and the remote machine that are
connected over the socket associated with PORT.

26.5 tcp-accept-ready? 152

http://www.opengroup.org/onlinepubs/009695399/functions/getservbyname.html

CHICKEN User's Manual - The User's Manual

26.11 tcp-abandon-port

[procedure] (tcp-abandon-port PORT)

Marks the socket port PORT as abandoned. This is mainly useful to close down a port without breaking the
connection.

26.12 tcp-buffer-size

[parameter] tcp-buffer-size

Sets the size of the output buffer. By default no output-buffering for TCP output is done, but to improve
performance by minimizing the number of TCP packets, buffering may be turned on by setting this parameter
to an exact integer greater zero. A buffer size of zero or # £ turns buffering off. The setting of this parameter
takes effect at the time when the I/O ports for a particular socket are created, i.e. when t cp—connect or
tcp-accept is called.

Note that since output is not immediately written to the associated socket, you may need to call

flush-output, once you want the output to be transmitted. Closing the output port will flush
automatically.

26.13 tcp-read-timeout

[parameter] tcp-read-timeout

Determines the timeout for TCP read operations in milliseconds. A timeout of # £ disables timeout checking.
The default read timeout is 60000, i.e. 1 minute.

26.14 tcp-write-timeout

[parameter] tcp-write-timeout

Determines the timeout for TCP write operations in milliseconds. A timeout of # £ disables timeout checking.
The default write timeout is 60000, i.e. 1 minute.

26.15 tcp-connect-timeout

[parameter] tcp-connect-timeout

Determines the timeout for t cp—connect operations in milliseconds. A timeout of # £ disables timeout
checking and is the default.

26.16 tcp-accept-timeout

[parameter] tcp-accept-timeout

26.11 tcp-abandon-port 153

CHICKEN User's Manual - The User's Manual

Determines the timeout for t cp—accept operations in milliseconds. A timeout of # £ disables timeout

checking and is the default.

26.17 Example

A very simple example follows. Say we have the two files client .scmand server.scm:

; client.scm
(declare (uses tcp))

(define-values (i o) (tcp-connect
(write—-1line o)

(print (read-line 1))

; server.scm

(declare (uses tcp))

(define 1 (tcp-listen 4242))
(define-values (i o) (tcp-accept 1))
(write—-1line o)

(print (read-line 1))
(close—-input-port 1i)
(close-output-port o)

oe

csc server.scm
csc client.scm
./server &
./client

Good Bye!

Hello!

o° o

oe

Previous: Unit utils

Next: Unit lolevel

26.16 tcp-accept-timeout

4242))

154

27 Unit lolevel

This unit provides a number of handy low-level operations. Use at your own risk.

This unit uses the srfi-4 and extras units.

27.1 Foreign pointers

27.1.1 address pointer

[procedure] (address->pointer ADDRESS)

Creates a new foreign pointer object initialized to point to the address given in the integer ADDRESS.

27.1.2 allocate

[procedure] (allocate BYTES)

Returns a pointer to a freshly allocated region of static memory. This procedure could be defined as follows:

(define allocate (foreign-lambda c-pointer integer))

27.1.3 free

[procedure] (free POINTER)
Frees the memory pointed to by POINTER. This procedure could be defined as follows:

(define free (foreign-lambda c-pointer integer))

27.1.4 null-pointer

[procedure] (null-pointer)

Another way to say (address->pointer 0).

27.1.5 null-pointer?

[procedure] (null-pointer? PTR)

Returns #t if PTR contains a NULL pointer, or # f otherwise.

27.1.6 object pointer

[procedure] (object->pointer X)

27 Unit lolevel

155

CHICKEN User's Manual - The User's Manual

Returns a pointer pointing to the Scheme object X, which should be a non-immediate object. Note that data in

the garbage collected heap moves during garbage collection.

27.1.7 pointer?

[procedure] (pointer? X)

Returns #t if X is a foreign pointer object, and # £ otherwise.

27.1.8 pointer=?

[procedure] (pointer=? PTR1 PTR2)

Returns #t if the pointer-like objects PTR1 and PTR2 point to the same address.

27.1.9 pointer address

[procedure] (pointer->address PTR)

Returns the address, to which the pointer PTR points.

27.1.10 pointer object

[procedure] (pointer->object PTR)

Returns the Scheme object pointed to by the pointer PTR.

27.1.11 pointer-offset

[procedure] (pointer-offset PTR N)

Returns a new pointer representing the pointer PTR increased by N.

27.1.12 pointer-u8-ref

[procedure] (pointer-u8-ref PTR)

Returns the unsigned byte at the address designated by PTR.

27.1.13 pointer-s8-ref

[procedure] (pointer-s8-ref PTR)

Returns the signed byte at the address designated by PTR.

27.1.6 object pointer

156

CHICKEN User's Manual - The User's Manual
27.1.14 pointer-u16-ref

[procedure] (pointer-ul6-ref PTR)

Returns the unsigned 16-bit integer at the address designated by PTR.

27.1.15 pointer-s16-ref

[procedure] (pointer-sl6-ref PTR)

Returns the signed 16-bit integer at the address designated by PTR.

27.1.16 pointer-u32-ref

[procedure] (pointer-u32-ref PTR)

Returns the unsigned 32-bit integer at the address designated by PTR.

27.1.17 pointer-s32-ref

[procedure] (pointer-s32-ref PTR)

Returns the signed 32-bit integer at the address designated by PTR.

27.1.18 pointer-f32-ref

[procedure] (pointer-f32-ref PTR)

Returns the 32-bit float at the address designated by PTR.

27.1.19 pointer-f64-ref

[procedure] (pointer-f64-ref PTR)

Returns the 64-bit double at the address designated by PTR.

27.1.20 pointer-u8-set!

[procedure] (pointer-u8-set! PTR N)
[procedure] (set! (pointer-u8-ref PTR) N)

Stores the unsigned byte N at the address designated by PTR.

27.1.21 pointer-s8-set!

[procedure] (pointer-s8-set! PTR N)
[procedure] (set! (pointer-s8-ref PTR) N)

27.1.14 pointer-u16-ref

157

CHICKEN User's Manual - The User's Manual

Stores the signed byte N at the address designated by PTR.

27.1.22 pointer-u16-set!

[procedure] (pointer-ul6-set! PTR N)
[procedure] (set! (pointer-ul6-ref PTR) N)

Stores the unsigned 16-bit integer N at the address designated by PTR.

27.1.23 pointer-s16-set!

[procedure] (pointer-sl6-set! PTR N)
[procedure] (set! (pointer-slé6-ref PTR) N)

Stores the signed 16-bit integer N at the address designated by PTR.

27.1.24 pointer-u32-set!

[procedure] (pointer-u32-set! PTR N)
[procedure] (set! (pointer-u32-ref PTR) N)

Stores the unsigned 32-bit integer N at the address designated by PTR.

27.1.25 pointer-s32-set!

[procedure] (pointer-s32-set! PTR N)
[procedure] (set! (pointer-s32-ref PTR) N)

Stores the 32-bit integer N at the address designated by PTR.

27.1.26 pointer-f32-set!

[procedure] (pointer-f32-set! PTR N)
[procedure] (set! (pointer-f32-ref PTR) N)

Stores the 32-bit floating-point number N at the address designated by PTR.

27.1.27 pointer-f64-set!

[procedure] (pointer-f64-set! PTR N)
[procedure] (set! (pointer-f64-ref PTR) N)

Stores the 64-bit floating-point number N at the address designated by PTR.

27.1.28 align-to-word

[procedure] (align-to-word PTR-OR-INT)

27.1.21 pointer-s8-set! 158

CHICKEN User's Manual - The User's Manual

Accepts either a machine pointer or an integer as argument and returns a new pointer or integer aligned to the
native word size of the host platform.

27.2 Tagged pointers

Tagged pointers are foreign pointer objects with an extra tag object.

27.2.1 tag-pointer

[procedure] (tag-pointer PTR TAG)

Creates a new tagged pointer object from the foreign pointer PTR with the tag TAG, which may an arbitrary
Scheme object.

27.2.2 tagged-pointer?
[procedure] (tagged-pointer? X TAG)

Returns #t, if X is a tagged pointer object with the tag TAG (using an eq? comparison), or # f otherwise.

27.2.3 pointer-tag

[procedure] (pointer-tag PTR)

If PTR is a tagged pointer object, its tag is returned. If PTR is a normal, untagged foreign pointer object # £ is
returned. Otherwise an error is signalled.

27.3 Extending procedures with data

27.3.1 extend-procedure
[procedure] (extend-procedure PROCEDURE X)
Returns a copy of the procedure PROCEDURE which contains an additional data slot initialized to X. If

PROCEDURE is already an extended procedure, then its data slot is changed to contain X and the same
procedure is returned.

27.3.2 extended-procedure?
[procedure] (extended-procedure? PROCEDURE)

Returns #t if PROCEDURE is an extended procedure, or # £ otherwise.

27.1.28 align-to-word 159

CHICKEN User's Manual - The User's Manual
27.3.3 procedure-data
[procedure] (procedure-data PROCEDURE)

Returns the data object contained in the extended procedure PROCEDURE, or # £ if it is not an extended
procedure.

27.3.4 set-procedure-data!
[procedure] (set-procedure-data! PROCEDURE X)
Changes the data object contained in the extended procedure PROCEDURE to X.

(define foo
(letrec ((f (lambda () (procedure-data x)))
(x #£f))
(set! x (extend-procedure f 123))
x))

(foo) ==> 123
(set-procedure-data! foo 'hello)
(foo) ==> hello

27.4 Data in unmanaged memory

27.4.1 object-evict

[procedure] (object-evict X [ALLOCATOR])

Copies the object X recursively into the memory pointed to by the foreign pointer object returned by
ALLOCATOR, which should be a procedure of a single argument (the number of bytes to allocate). The freshly
copied object is returned. This facility allows moving arbitrary objects into static memory, but care should be
taken when mutating evicted data: setting slots in evicted vector-like objects to non-evicted data is not
allowed. It is possible to set characters/bytes in evicted strings or byte-vectors, though. It is advisable not to
evict ports, because they might be mutated by certain file-operations. ob ject-evict is able to handle
circular and shared structures, but evicted symbols are no longer unique: a fresh copy of the symbol is created,
SO

define x 'foo)
define y (object-evict 'foo))

(

(

vy ==> foo
(eq? x y) ==> #f
(define z (object-evict '(bar bar)))
(eg? (car z) (cadr z)) ==> #t

The ALLOCATOR defaults to allocate.

27.4.2 object-evict-to-location
[procedure] (object-evict-to-location X PTR [LIMIT])

As object-evict but moves the object at the address pointed to by the machine pointer PTR. If the
number of copied bytes exceeds the optional LIMIT then an error is signalled (specifically a composite

27.3.3 procedure-data 160

CHICKEN User's Manual - The User's Manual

condition of types exn and evict. The latter provides a 1imit property which holds the exceeded limit.
Two values are returned: the evicted object and a new pointer pointing to the first free address after the
evicted object.

27.4.3 object-evicted?

[procedure] (object-evicted? X)

Returns #t if X is a non-immediate evicted data object, or # £ otherwise.

27.4.4 object-size

[procedure] (object-size X)

Returns the number of bytes that would be needed to evict the data object X.

27.4.5 object-release
[procedure] (object-release X [RELEASER])

Frees memory occupied by the evicted object X recursively. RELEASER should be a procedure of a single
argument (a foreign pointer object to the static memory to be freed) and defaults to free.

27.4.6 object-unevict

[procedure] (object-unevict X [FULL])

Copies the object X and nested objects back into the normal Scheme heap. Symbols are re-interned into the
symbol table. Strings and byte-vectors are not copied, unless FULL is given and not #£.

27.5 Locatives

A locative is an object that points to an element of a containing object, much like a poinfer in low-level,
imperative programming languages like C. The element can be accessed and changed indirectly, by
performing access or change operations on the locative. The container object can be computed by calling the
location—->object procedure.

Locatives may be passed to foreign procedures that expect pointer arguments. The effect of creating locatives
for evicted data (see object—-evict) is undefined.

27.5.1 make-locative
[procedure] (make-locative EXP [INDEX])
Creates a locative that refers to the element of the non-immediate object EXP at position INDEX. EXP may be

a vector, pair, string, blob, SRFI-4 number-vector, or record. INDEX should be a fixnum. INDEX defaults to
0.

27.4.2 object-evict-to-location 161

CHICKEN User's Manual - The User's Manual

27.5.2 make-weak-locative

[procedure] (make-weak-locative EXP [INDEX])

Creates a weak locative. Even though the locative refers to an element of a container object, the container
object will still be reclaimed by garbage collection if no other references to it exist.

27.5.3 locative?

[procedure] (locative? X)

Returns #t if X is a locative, or # £ otherwise.

27.5.4 locative-ref

[procedure] (locative-ref LOC)

Returns the element to which the locative LOC refers. If the containing object has been reclaimed by garbage
collection, an error is signalled.

27.5.5 locative-set!

[procedure] (locative-set! LOC X)
[procedure] (set! (locative-ref LOC) X)

Changes the element to which the locative LOC refers to X. If the containing object has been reclaimed by
garbage collection, an error is signalled.

27.5.6 locative object

[procedure] (locative->object LOC)

Returns the object that contains the element referred to by LOC or # £ if the container has been reclaimed by
garbage collection.

27.6 Accessing toplevel variables

27.6.1 global-bound?

[procedure] (global-bound? SYMBOL)

Returns #t, if the global (toplevel) variable with the name SYMBOL is bound to a value, or # £ otherwise.

27.6.2 global-ref

[procedure] (global-ref SYMBOL)

27.5.2 make-weak-locative 162

CHICKEN User's Manual - The User's Manual

Returns the value of the global variable SYMBOL. If no variable under that name is bound, an error is
signalled.

Note that it is not possible to access a toplevel binding with global-ref or global-set! if it has been
hidden in compiled code via (declare (hide ...)),orif the code has been compiled in block mode.

27.6.3 global-set!

[procedure] (global-set! SYMBOL X)
[procedure] (set! (global-ref SYMBOL) X)

Sets the global variable named SYMBOL to the value X.

27.7 Low-level data access

27.7.1 block-ref

[procedure] (block-ref BLOCK INDEX)

Returns the contents of the INDEXth slot of the object BLOCK. BLOCK may be a vector, record structure, pair
or symbol.

27.7.2 block-set!

[procedure] (block-set! BLOCK INDEX X)
[procedure] (set! (block-ref BLOCK INDEX) X)

Sets the contents of the INDEXth slot of the object BLOCK to the value of X. BLOCK may be a vector, record
structure, pair or symbol.

27.7.3 object-copy
[procedure] (object-copy X)

Copies X recursively and returns the fresh copy. Objects allocated in static memory are copied back into
garbage collected storage.

27.7.4 make-record-instance

[procedure] (make-record-instance SYMBOL ARGl ...)

Returns a new instance of the record type SYMBOL, with its slots initialized to ARG1 To illustrate:
(define-record point x y)

expands into something quite similar to:

(begin
(define (make—-point x vy)

27.6.2 global-ref 163

CHICKEN User's Manual - The User's Manual

(make-record-instance 'point x y))
(define (point? x)

(and (record-instance? x)

(egq? 'point (block-ref x 0))))

define (point-x p) (block-ref p 1))
define (point-x-set! p x) (block-set! p 1 x))
define (point-y p) (block-ref p 2))
define (point-y-set! p y) (block-set! p 1 vy)))

(
(
(
(
27.7.5 move-memory!

[procedure] (move-memory! FROM TO [BYTES [FROM-OFFSET [TO-OFFSET]])

Copies BYTES bytes of memory from FROM to TO. FROM and TO may be strings, primitive byte-vectors,
SRFI-4 byte-vectors (see: @ref{Unit srfi-4}), memory mapped files, foreign pointers (as obtained from a call
to foreign-lambda, for example) or locatives. if BYTES is not given and the size of the source or
destination operand is known then the maximal number of bytes will be copied. Moving memory to the
storage returned by locatives will cause havoc, if the locative refers to containers of non-immediate data, like

vectors or pairs.

The additional fourth and fifth argument specify starting offsets (in bytes) for the source and destination
arguments.

27.7.6 number-of-bytes

[procedure] (number-of-bytes BLOCK)

Returns the number of bytes that the object BLOCK contains. BLOCK may be any non-immediate value.

27.7.7 number-of-slots

[procedure] (number-of-slots BLOCK)

Returns the number of slots that the object BLOCK contains. BLOCK may be a vector, record structure, pair or
symbol.

27.7.8 record-instance?

[procedure] (record-instance? X)

Returns #t if X is an instance of a record type. See also: make-record-instance.

27.7.9 record vector

[procedure] (record->vector BLOCK)

Returns a new vector with the type and the elements of the record BLOCK.

27.7.4 make-record-instance 164

CHICKEN User's Manual - The User's Manual

27.8 Procedure-call- and variable reference hooks

27.8.1 set-invalid-procedure-call-handler!

[procedure] (set-invalid-procedure-call-handler! PROC)

Sets an internal hook that is invoked when a call to an object other than a procedure is executed at runtime.
The procedure PROC will in that case be called with two arguments: the object being called and a list of the
passed arguments.

;77 Access sequence-elements as in ARC:

(set—-invalid-procedure-call-handler!
(lambda (proc args)

(cond [(string? proc) (apply string-ref proc args)]
[(vector? proc) (apply vector-ref proc args)]
[else (error proc)l)))
(4) ==> #\o

This facility does not work in code compiled with the unsafe setting.

27.8.2 unbound-variable-value

[procedure] (unbound-variable-value [X])
Defines the value that is returned for unbound variables. Normally an error is signalled, use this procedure to
override the check and return X instead. To set the default behavior (of signalling an error), call

unbound-variable-value with no arguments.

This facility does not work in code compiled with the unsafe setting.

27.9 Magic

27.9.1 object-become!

[procedure] (object-become! ALIST)

Changes the identity of the value of the car of each pair in ALIST to the value of the cdr. Both values may not
be immediate (i.e. exact integers, characters, booleans or the empty list).

define x)
define y '#(and now i am a vector))

(

(

(object-become! (list (cons x y)))

X ==> #(and now 1 am a vector)
y ==> #(and now i1 am a vector)
(eg? x Vy) ==> #t

Note: this operation invokes a major garbage collection.

The effect of using object-become! on evicted data (see object-evict) is undefined.

27.8 Procedure-call- and variable reference hooks 165

CHICKEN User's Manual - The User's Manual
27.9.2 mutate-procedure

[procedure] (mutate-procedure OLD PROC)

Replaces the procedure OLD with the result of calling the one-argument procedure PROC. PROC will receive a
copy of OLD that will be identical in behaviour to the result of PROC:

;77 Replace arbitrary procedure with tracing one:
(mutate-procedure my-proc
(lambda (new)
(lambda args

(printf new args)
(apply new args))))

Previous: Unit tcp

Next: Interface to external functions and variables

27.9.2 mutate-procedure 166

28 Interface to external functions and variables

e Accessing external objects
e Foreign type specifiers

¢ Embedding

e Callbacks

® Locations

® Other support procedures
¢ C interface

Previous: Supported language

Next: chicken-setup

28 Interface to external functions and variables 167

29 Accessing external objects

29.1 foreign-code

[syntax] (foreign-code STRING ...)

Executes the embedded C/C++ code STRING . . ., which should be a sequence of C statements, which are
executed and return an unspecified result.

(foreign-code) => #<unspecified>

Code wrapped inside foreign—-code may not invoke callbacks into Scheme.

29.2 foreign-value

[syntax] (foreign-value STRING TYPE)

Evaluates the embedded C/C++ expression STRING, returning a value of type given in the foreign-type
specifier TYPE.

(print (foreign-value c-string))

29.3 foreign-declare

[syntax] (foreign-declare STRING ...)

Include given strings verbatim into header of generated file.

29.4 define-foreign-type
[syntax] (define-foreign-type NAME TYPE [ARGCONVERT [RETCONVERT]])

Defines an alias for TYPE with the name NAME (a symbol). TYPE may be a type-specifier or a string naming
a C type. The namespace of foreign type specifiers is separate from the normal Scheme namespace. The
optional arguments ARGCONVERT and RETCONVERT should evaluate to procedures that map argument- and
result-values to a value that can be transformed to TYPE:

(define-foreign-type char-vector
nonnull-c-string
(compose list->string vector->1list)
(compose list->vector string->1list))

(define strlen
(foreign—-lambda int char-vector))

(strlen '# (#\a #\b #\c)) ==> 3

(define memset
(foreign-lambda char-vector char-vector char int))

(memset "#(#_ #_ #_) #\X 3) ==> # (#\X #\X #\X)

29 Accessing external objects 168

CHICKEN User's Manual - The User's Manual

Foreign type-definitions are only visible in the compilation-unit in which they are defined, so use include
to use the same definitions in multiple files.

29.5 define-foreign-variable

[syntax] (define-foreign-variable NAME TYPE [STRING])

Defines a foreign variable of name NAME (a symbol). STRING should be the real name of a foreign variable
or parameterless macro. If STRING is not given, then the variable name NAME will be converted to a string
and used instead. All references and assignments (via set !) are modified to correctly convert values between
Scheme and C representation. This foreign variable can only be accessed in the current compilation unit, but
the name can be lexically shadowed. Note that STRING can name an arbitrary C expression. If no
assignments are performed, then STRING doesn't even have to specify an lvalue.

#>
enum { abc=3, def, ghi },
<#
(define-macro (define-simple-foreign-enum . items)
' (begin
, @ (map (match-lambda
[(name realname) °~ (define-foreign-variable ,name int , realname)]
[name ° (define-foreign-variable ,name int)])
items)))

(define-simple-foreign-enum abc def ghi)

ghi ==> 5

29.6 define-foreign-record

[syntax] (define-foreign-record NAME [DECL ...] SLOT ...)

Defines accessor procedures for a C structure definition. NAME should either be a symbol or a list of the form
(TYPENAME FOREIGNNAME). If NAME is a symbol, then a C declaration will be generated that defines a C
struct named st ruct NAME. If NAME is a list, then no struct declaration will be generated and

FORE IGNNAME should name an existing C record type. A foreign-type specifier named NAME (or
TYPENAME) will be defined as a pointer to the given C structure. A SLOT definition should be a list of one of
the following forms:

(TYPE SLOTNAME)

or

(TYPE SLOTNAME SIZE)

The latter form defines an array of SIZE elements of the type TYPE embedded in the structure. For every
slot, the following accessor procedures will be generated:

29.6.1 TYPENAME-SLOTNAME

(TYPENAME-SLOTNAME FOREIGN-RECORD-POINTER [INDEX])

29.4 define-foreign-type 169

CHICKEN User's Manual - The User's Manual

A procedure of one argument (a pointer to a C structure), that returns the slot value of the slot SLOTNAME. If
a SIZE has been given in the slot definition, then an additional argument INDEX is required that specifies the
index of an array-element.

29.6.2 TYPENAME-SLOTNAME-set!

(TYPENAME-SLOTNAME-set! FOREIGN-RECORD-POINTER [INDEX] VALUE)

A procedure of two arguments (a pointer to a C structure) and a value, that sets the slot value of the slot
SLOTNAME in the structure. If a STZE has been given in the slot definition, then an additional argument
INDEX is required for the array index.

If a slot type is of the form (const ...), then no setter procedure will be generated. Slots of the types
(struct ...) or (union ...) areaccessed as pointers to the embedded struct (or union) and no setter
will be generated.

Additionally, special record-declarations (DECL . . .) may be given, where each declaration consists of a list
of the form (KEYWORD ARGUMENT .. .).The available declarations are:

29.6.3 constructor
(constructor: NAME)

Generate a constructor-procedure with no arguments that has the name NAME (a symbol) that returns a pointer
to a structure of this type. The storage will be allocated withmalloc (3).

29.6.4 destructor

(destructor: NAME)

Generate a destructor function with the name NAME that takes a pointer to a structure of this type as its single
argument and releases the storage with free (3). If the argument is # £, the destructor procedure does
nothing.

29.6.5 rename
(rename: EXPRESSION)

Evaluates EXPRESSTION at compile-/macro-expansion-time and applies the result, which should be a
procedure, to the string-representation of the name of each accessor-procedure generated. Another (or the
same) string should be returned, which in turn is taken as the actual name of the accessor.

An example:

(require-for-syntax 'srfi-13)

(define-foreign-record Some_Struct
(rename: (compose string-downcase (cut string-translate <>)))
(constructor: make-some-struct)
(destructor: free-some-struct)
(int xCoord)
(int yCoord))

29.6.1 TYPENAME-SLOTNAME 170

CHICKEN User's Manual - The User's Manual

will generate the following procedures:

(make—-some—-struct) ——> C-POINTER
(free-some—-struct C-POINTER)

(some-struct-xcoord C-POINTER) ——> NUMBER
(some-struct-ycoord C-POINTER) ——> NUMBER

(some-struct-xcoord-set! C-POINTER NUMBER)
(some-struct-ycoord-set! C-POINTER NUMBER)

29.7 define-foreign-enum

[syntax] (define-foreign-enum TYPESPEC [USE-ALIASES] ENUMSPEC ...)

Defines a foreign type (as with define-foreign-type) that maps the elements of a C/C++ enum (or a
enum-like list of constants) to and from a set of symbols.

TYPESPEC specifies a foreign type that converts a symbol argument from the set ENUMSPEC . . . into the
appropriate enum value when passed as an argument to a foreign function.

A list of symbols passed as an argument will be combined using bitwise-ior. An empty list will be
passed as 0 (zero). Results of the enum type are automatically converted into a scheme value (note that
combinations are not supported in this case).

TYPESPEC maybe a TYPENAME symbol or a list of the form (SCHEMENAME REALTYPE
[DEFAULT-SCHEME-VALUE]), where REALTYPE designates the native type used. The default type
specification is (TYPENAME TYPENAME). The DEFAULT-SCHEME-VALUE overrides the default result of
mapping from the native type; i.e. when no such mapping exists. When supplied the form is used unquoted,
otherwise the resultis ' ().

ENUMSPEC is a TYPENAME symbol or a list of the form (SCHEMENAME REALTYPE
[SCHEME-VALUE]), where REALTYPE designates the native type used. The default enum specification is
(TYPENAME TYPENAME). The SCHEME-VALUE overrides the result of mapping from the native type.
When supplied the form is used unquoted, otherwise the SCHEMENAME symbol is returned.

USE-ALIASES is an optional boolean flag that determines whether an alias or the SCHEMENAME is used as
the defined foreign variable name. The default is #t.

Additionally two procedures are defined named SCHEMENAME ->number and number->SCHEMENAME.
SCHEMENAME->number takes one argument and converts a symbol (or a list of symbols) into its numeric
value. number—->SCHEMENAME takes one argument and converts a numeric value into its scheme value.

Note that the specification of a scheme value override (SCHEME-VALUE) means the mapping may not be
closed! (number->SCHEMENAME (SCHEMENAME->number SCHEMENAME)) may not equal
SCHEMENAME.

Here a heavily contrived example:

#>

enum foo { a_foo = 4, b_foo, c_foo };

enum foo bar (enum foo x) { printf (, X); return b_foo; }
<#

(define-foreign-enum (foo (enum)) a_foo b_foo (c c_foo))

29.6.5 rename 171

CHICKEN User's Manual - The User's Manual

(define bar (foreign-lambda foo bar foo))

(pp (bar '()))
(pp (bar 'a_foo))
(pp (bar '(b_foo c)))

29.8 foreign-lambda
[syntax] (foreign-lambda RETURNTYPE NAME ARGTYPE ...)

Represents a binding to an external routine. This form can be used in the position of an ordinary 1ambda
expression. NAME specifies the name of the external procedure and should be a string or a symbol.

29.9 foreign-lambda*
[syntax] (foreign-lambda* RETURNTYPE ((ARGTYPE VARIABLE) ...) STRING ...)

Similar to foreign-lambda, but instead of generating code to call an external function, the body of the C
procedure is directly given in STRING

(define my-strlen
(foreign—-lambda* int ((c-string str))

(my-strlen) ==> 13
For obscure technical reasons you should use the C_return macro instead of the normal return statement

to return a result from the foreign lambda body as some cleanup code has to be run before execution
commences in the calling code.

29.10 foreign-safe-lambda
[syntax] (foreign-safe-lambda RETURNTYPE NAME ARGTYPE ...)

This is similar to foreign-1lambda, but also allows the called function to call Scheme functions and
allocate Scheme data-objects. See Callbacks.

29.11 foreign-safe-lambda*

[syntax] (foreign-safe-lambda* RETURNTYPE ((ARGTYPE VARIABLE)...) STRING ...)

This is similar to foreign—-1lambda*, but also allows the called function to call Scheme functions and
allocate Scheme data-objects. See Callbacks.

29.12 foreign-primitive

[syntax] (foreign-primitive [RETURNTYPE] ((ARGTYPE VARIABLE) ...) STRING ...)

29.7 define-foreign-enum 172

CHICKEN User's Manual - The User's Manual

This is also similar to foreign-1lambda* but the code will be executed in a primitive CPS context, which
means it will not actually return, but call it's continuation on exit. This means that code inside this form may
allocate Scheme data on the C stack (the nursery) with C_alloc (see below). If the RETURNTYPE is
omitted it defaults to void. You can return multiple values inside the body of the foreign-primitive
form by calling this C function:

C_values (N + 2, C_SCHEME UNDEFINED, C_k, X1, ...)

where N is the number of values to be returned, and X1, ... are the results, which should be Scheme data
objects. When returning multiple values, the return-type should be omitted.

Previous: Interface to external functions and variables

Next: Foreign type specifiers

29.12 foreign-primitive 173

30 Foreign type specifiers

Here is a list of valid foreign type specifiers:

30.1 scheme-object

An arbitrary Scheme data object (immediate or non-immediate).

30.2 bool

As argument: any value (#£ is false, anything else is true).

As result: anything different from 0 and the NULL pointer is #t.

30.3 byte unsigned-byte

A byte.

30.4 char unsigned-char

A character.

30.5 short unsigned-short

A short integer number.

30.6 int unsigned-int int32 unsigned-int32

An small integer number in fixnum range (at least 30 bit).

30.7 integer unsigned-integer integer32 unsigned-integer32

integer64

Either a fixnum or a flonum in the range of a (unsigned) machine int or with 32/64 bit width.

30.8 long unsigned-long

Either a fixnum or a flonum in the range of a (unsigned) machine long or with 32 bit width.

30 Foreign type specifiers

CHICKEN User's Manual - The User's Manual

30.9 float double

A floating-point number. If an exact integer is passed as an argument, then it is automatically converted to a
float.

30.10 number

A floating-point number. Similar to double, but when used as a result type, then either an exact integer or a
floating-point number is returned, depending on whether the result fits into an exact integer or not.

30.11 symbol

A symbol, which will be passed to foreign code as a zero-terminated string.

When declared as the result of foreign code, the result should be a string and a symbol with the same name
will be interned in the symbol table (and returned to the caller).

30.12 scheme-pointer

An untyped pointer to the contents of a non-immediate Scheme object (not allowed as return type). The value
#£ is also allowed and is passed as a NULL pointer.

Don't confuse this type with (c-pointer ...) which means something different (a machine-pointer
object).

30.13 nonnull-scheme-pointer

As scheme-pointer, but guaranteed not to be #£.

Don't confuse this type with (nonnull-c-pointer ...) which means something different (a
machine-pointer object).

30.14 c-pointer

An untyped operating-system pointer or a locative. The value #£ is also allowed and is passed as a NULL
pointer. If uses as the type of a return value, a NULL pointer will be returned as #£.

30.15 nonnull-c-pointer

As c-pointer, but guaranteed not to be # £ /NULL.

30.9 float double 175

CHICKEN User's Manual - The User's Manual

30.16 blob

A blob object, passed as a pointer to its contents. Arguments of type b1ob may optionally be # £, which is
passed as a NULL pointer.

This is not allowed as a return type.

30.17 nonnull-blob

As blob, but guaranteed not to be # £.

30.18 u8vector uibvector u32vector s8vector si6vector
s32vector f32vector f64vector

A SRFI-4 number-vector object, passed as a pointer to its contents.

These type specifiers are not allowed as return types.

30.19 nonnull-u8vector nonnull-u16vector
nonnull-u32vector nonnull-s8vector nonnull-s16vector
nonnull-s32vector nonnull-f32vector nonnull-f64vector

Asu8vector ...,butguaranteed not to be #£.

30.20 c-string

A C string (zero-terminated). The value # £ is also allowed and is passed as a NULL pointer. If uses as the type
of a return value, a NULL pointer will be returned as #£. Note that the string is copied (with a zero-byte
appended) when passed as an argument to a foreign function. Also a return value of this type is copied into
garbage collected memory.

30.21 nonnull-c-string

As c—string, but guaranteed not to be # £ /NULL.

30.22 [nonnull-] c-string*

Similar to [nonnull-] c-string, butif used as a result-type, the pointer returned by the foreign code
will be freed (using the C-libraries free (1)) after copying. This type specifier is not valid as a result type
for callbacks defined with define-external.

30.16 blob 176

CHICKEN User's Manual - The User's Manual

30.23 [nonnull-] unsigned-c-string[*]

Same as c-string, but maps to the unsigned char * C type.

30.24 c-string-list

Expects a pointer to a list of C strings teminated by a NULL pointer and returns a list of strings.

Only valid as a result type of non-callback functions.

30.25 c-string-list*

Similar to c-string—-1ist butreleases the storage of each string and the pointer array using free (1).

30.26 void

Specifies an undefined return value.

Not allowed as argument type.

30.27 (const TYPE)

The foreign type TYPE with an additional const specifier.

30.28 (enum NAME)

An enumeration type. Handled internally as an integer.

30.29 (c-pointer TYPE)

An operating-system pointer or a locative to an object of TYPE.

30.30 (nonnull-c-pointer TYPE)

As (c-pointer TYPE), but guaranteed not to be #£/NULL.

30.31 (ref TYPE)

A C++ reference type. Reference types are handled the same way as pointers inside Scheme code.

30.23 [nonnull-] unsigned-c-string[*]

177

CHICKEN User's Manual - The User's Manual

30.32 (struct NAME)

A struct of the name NAME, which should be a string.

Structs cannot be directly passed as arguments to foreign function, neither can they be result values. Pointers
to structs are allowed, though.

30.33 (template TYPE ARGTYPE ...)

A C++ template type. For example vector<int> would be specified as (template "vector" int).

Template types cannot be directly passed as arguments or returned as results.

30.34 (union NAME)

A union of the name NAME, which should be a string.

Unions cannot be directly passed as arguments to foreign function, neither can they be result values. Pointers
to unions are allowed, though.

30.35 (instance CNAME SCHEMECLASS)

A pointer to a C++ class instance. CNAME should designate the name of the C++ class, and SCHEMECLASS
should be the class that wraps the instance pointer. Normally SCHEMECLASS should be a subclass of
<ct+-object>.

30.36 (instance-ref CNAME SCHEMECLASS)

A reference to a C++ class instance.

30.37 (function RESULTTYPE (ARGUMENTTYPE1 ... [...])
[CALLCONV])

A function pointer. CALLCONV specifies an optional calling convention and should be a string. The meaning
of this string is entirely platform dependent. The value # £ is also allowed and is passed as a NULL pointer.

30.38 Mappings

Foreign types are mapped to C types in the following manner:

bool int
[unsigned-]char [unsigned] char
[unsigned-]short [unsigned] short

30.32 (struct NAME) 178

CHICKEN User's Manual - The User's Manual

[unsigned-]int
[unsigned-Jinteger
[unsigned-]long
float

double

number
[nonnull-]c-pointer
[nonnull-]blob
[nonnull-Ju8vector
[nonnull-]s8vector
[nonnull-Jul6vector
[nonnull-]s16vector
[nonnull-Ju32vector
[nonnull-]s32vector
[nonnull-]f32vector
[nonnull-]f64vector
[nonnull-]c-string
[nonnull-Junsigned-c-string
c-string-list

symbol

void
([nonnull-]c-pointer TYPE)
(enum NAME)
(struct NAME)

(ref TYPE)
(template T1 T2 ...)
(union NAME)

(function RTYPE (ATYPE ...) [CALLCONV])

(instance CNAME SNAME)

(instance-ref CNAME SNAME)
Previous: Accessing external objects

Next: Embedding

30.38 Mappings

[unsigned] int
[unsigned] int
[unsigned] long
float

double

double

void *
unsigned char *
unsigned char *
char *
unsigned short *
short *
uint32_t *
int32_t *

float *

double *

char *
unsigned char *
char **

char *

void

TYPE *

enum NAME
struct NAME
TYPE &
T1<T2, ..>
union NAME

[CALLCONV] RTYPE (*)(ATYPE, ...)

CNAME *
CNAME &

179

31 Embedding

Compiled Scheme files can be linked with C code, provided the Scheme code was compiled in embedded
mode by passing ~-DC_EMBEDDED to the C compiler (this will disable generation of amain () function).
csc will do this, when given the —embedded option. Alternatively pass —embedded to csc.

The following C API is available:

31.1 CHICKEN_parse_command_line

[C function] void CHICKEN_parse_command_line (int argc, char *argv([], int *heap, int *stack int *

Parse the programs command-line contained in argc and argv and return the heap-, stack- and symbol table
limits given by runtime options of the form —: . . ., or choose default limits. The library procedure argv can
access the command-line only if this function has been called by the containing application.

31.2 CHICKEN_initialize

[C function] int CHICKEN_initialize (int heap, int stack, int symbols, void *toplevel)

Initializes the Scheme execution context and memory. heap holds the number of bytes that are to be
allocated for the secondary heap. st ack holds the number of bytes for the primary heap. symbols contains
the size of the symbol table. Passing 0 to one or more of these parameters will select a default size.
toplevel should be a pointer to the toplevel entry point procedure. You should pass C_toplevel here. In
any subsequent call to CHICKEN_ run you can simply pass NULL. Calling this function more than once has
no effect. If enough memory is available and initialization was successful, then 1 is returned, otherwise this
function returns 0.

31.3 CHICKEN run

[C function] C_word CHICKEN_run (void *toplevel)

Starts the Scheme program. Call this function once to execute all toplevel expressions in your compiled
Scheme program. If the runtime system was not initialized before, then CHICKEN_initialize is called
with default sizes. toplevel is the toplevel entry-point procedure, you usually pass C_toplevel here.
The result value is the continuation that can be used to re-invoke the Scheme code from the point after it
called return—-to-host (see below).

If you just need a Scheme interpreter, you can also pass CHICKEN_default_toplevel as the toplevel
procedure, which just uses the default library units.

Once CHICKEN_ run has been called, Scheme code is executing until all toplevel expressions have been
evaluated or until return-to-host is called inside the Scheme program.

31.4 return-to-host

[procedure] (return-to-host)

31 Embedding 180

CHICKEN User's Manual - The User's Manual

Exits the Scheme code and returns to the invoking context that called CHICKEN_ run or
CHICKEN_ continue.

After return—to—host has been executed and once CHICKEN_ run returns, you can invoke callbacks

which have been defined with define-external. The eval library unit also provides boilerplate
callbacks, that simplify invoking Scheme code embedded in a C or C++ application a lot.

31.5 CHICKEN eval

[C macro] int CHICKEN_eval (C_word exp, C_word *result)
Evaluates the Scheme object passed in exp, writing the result value to result. The return value is 1 if the

operation succeeded, or 0 if an error occurred. Call CHICKEN_get_error_message to obtain a
description of the error.

31.6 CHICKEN_eval_string

[C macro] int CHICKEN_eval_string (char *str, C_word *result)

Evaluates the Scheme expression passed in the string st r, writing the result value to result.

31.7 CHICKEN_eval_to_string

[C macro] int CHICKEN_eval_to_string (C_word exp, char *result, int size)

Evaluates the Scheme expression passed in exp, writing a textual representation of the result into result.
size should specify the maximal size of the result string.

31.8 CHICKEN_eval_string to_string

[C macro] int CHICKEN_eval_string_to_string (char *str, char *result, int size)

Evaluates the Scheme expression passed in the string st r, writing a textual representation of the result into
result. size should specify the maximal size of the result string.

31.9 CHICKEN_apply

[C macro] int CHICKEN_apply (C_word func, C_word args, C_word *result)

Applies the procedure passed in func to the list of arguments args, writing the result value to result.

31.10 CHICKEN_apply_to_string

[C macro] int CHICKEN_apply_to_string (C_word func, C_word args, char *result, int size)

31.4 return-to-host 181

CHICKEN User's Manual - The User's Manual

Applies the procedure passed in func to the list of arguments args, writing a textual representation of the
result into result.

31.11 CHICKEN read

[C macro] int CHICKEN_read (char *str, C_word *result)

Reads a Scheme object from the string st r, writing the result value to result.

31.12 CHICKEN_load

[C macro] int CHICKEN_load (char *filename)

Loads the Scheme file £i1lename (either in source form or compiled).

31.13 CHICKEN_get_error_message

[C macro] void CHICKEN_get_error_message (char *result, int size)

Returns a textual description of the most recent error that occurred in executing embedded Scheme code.

31.14 CHICKEN_yield

[C macro] int CHICKEN_yield (int *status)

If threads have been spawned during earlier invocations of embedded Scheme code, then this function will run
the next scheduled thread for one complete time-slice. This is useful, for example, inside an id/e handler in a
GUI application with background Scheme threads. Note that the srfi-18 library unit has to be linked in for
this.

An example:

)

% cat x.scm
;57 X.scm

(define (bar x) (gc) (* x x))
(define—-external (baz (int 1i)) double
(sgrt 1))

(return-to-host)

% cat y.c
/* y.c */

#include <chicken.h>
#include <assert.h>

extern double baz (int);
int main () {
char buffer|[256 1;

int status;
C_word val = C_SCHEME_UNDEFINED;

31.10 CHICKEN_apply_to_string 182

CHICKEN User's Manual - The User's Manual
C_word *datal 1 1;
datal 0] = &val;
CHICKEN_run (C_toplevel);

status = CHICKEN_read (" (bar 99)", s&val);
assert (status);

C_gc_protect (data, 1);
printf ("data: %08x\n", wval);

status = CHICKEN_eval_string_to_string (" (bar)", buffer, 255);
assert (!status);

CHICKEN_get_error_message (buffer, 255);
printf ("ouch: %s\n", buffer);

status = CHICKEN_eval_string_to_string (" (bar 23)", buffer, 255);
assert (status);

printf ("-> %s\n", buffer);
printf ("data: %08x\n", wval);

status = CHICKEN_eval_to_string(val, buffer, 255);
assert (status);
printf ("-> %s\n", buffer);

printf ("->" %g\n", baz(22));

return 0;

}

)

% csc x.scm y.c —embedded

It is also possible to re-enter the computation following the call to return-to-host by calling
CHICKEN_ continue:

31.15 CHICKEN_continue

[C function] C_word CHICKEN_continue (C_word k)

Re-enters Scheme execution. k is the continuation received from the previous invocation of CHICKEN_run
or CHICKEN_continue. When return-to-host is called again, this function returns another
continuation that can be used to restart again.

If you invoke callbacks prior to calling CHICKEN_ cont inue, make sure that the continuation is not
reclaimed by garbage collection. This can be avoided by using C_gc_protect or gc-roots.

Another example:

% cat x.scm
(require-extension srfi-18)

(define m (make-mutex))
(define (t)
(mutex—-lock! m)

(thread-sleep! 1)
(print (thread-name (current-thread)))

31.14 CHICKEN_yield 183

CHICKEN User's Manual - The User's Manual

(mutex—unlock! m)
(t))

(thread-start! (make-thread t 'PING!))
(thread-start! (make-thread t 'PONG!))

(let loop ()
(return-to-host)
(thread-yield!)
(loop))

% cat y.c

#include <chicken.h>

int main ()

{
C_word k = CHICKEN_run (C_toplevel);

for(;;)
k = CHICKEN_continue (k) ;

return 0;

}

)

% csc x.scm y.c —embedded

It is advisable not to mix repeated uses of CHICKEN_continue/return-to-host (as in the example
above) with callbacks. Once return—to-host is invoked, the runtime system and any Scheme code
executed prior to the invocation is initialized and can be conveniently used via callbacks.

A simpler interface For handling GC-safe references to Scheme data are the so called gc-roots:

31.16 CHICKEN_new_gc_root

[C function] void* CHICKEN_new_gc_root ()

Returns a pointer to a GC root, which is an object that holds a reference to a Scheme value that will always be

valid, even after a garbage collection. The content of the gc root is initialized to an unspecified value.

31.17 CHICKEN_delete_gc_root

[C function] void CHICKEN_delete_gc_root (void *root)

Deletes the gc root.

31.18 CHICKEN_gc _root_ref

[C macro] C_word CHICKEN_gc_root_ref (void *root)

Returns the value stored in the gc root.

31.15 CHICKEN_ continue

184

CHICKEN User's Manual - The User's Manual

31.19 CHICKEN_gc root_set

[C macro] void CHICKEN_gc_root_set (void *root, C_word value)
Sets the content of the GC root to a new value.

Sometimes it is handy to access global variables from C code:

31.20 CHICKEN_global_lookup

[C function] void* CHICKEN_global_lookup (char *name)

Returns a GC root that holds the global variable with the name name. If no such variable exists, NULL is
returned.

31.21 CHICKEN_global_ref

[C function] C_word CHICKEN_global_ref (void *global)

Returns the value of the global variable referenced by the GC root global.

31.22 CHICKEN_global_set

[C function] void CHICKEN_global_set (void *global, C_word value)
Sets the value of the global variable referenced by the GC root global to value.
Previous: Foreign type specifiers

Next: Callbacks

31.19 CHICKEN_gc root_set 185

32 Callbacks

To enable an external C function to call back to Scheme, the form foreign-safe-lambda (or
foreign-safe-lambda*) has to be used. This generates special code to save and restore important state
information during execution of C code. There are two ways of calling Scheme procedures from C: the first is
to invoke the runtime function C__callback with the closure to be called and the number of arguments. The
second is to define an externally visible wrapper function around a Scheme procedure with the
define—external form.

Note: the names of all functions, variables and macros exported by the CHICKEN runtime system start with
C_. Itis advisable to use a different naming scheme for your own code to avoid name clashes. Callbacks

(defined by define-external) do not capture the lexical environment.

Non-local exits leaving the scope of the invocation of a callback from Scheme into C will not remove the C
call-frame from the stack (and will result in a memory leak).

32.1 define-external

[syntax] (define-external [QUALIFIERS] (NAME (ARGUMENTTYPEl VARIABLEl) ...) RETURNTYPE BODY ...

[syntax] (define-external NAME TYPE [INIT])

The first form defines an externally callable Scheme procedure. NAME should be a symbol, which, when
converted to a string, represents a legal C identifier. ARGUMENTTYPE1 ... and RETURNTYPE are foreign
type specifiers for the argument variables VAR1 . .. and the result, respectively. QUALIFIERS is an
optional qualifier for the foreign procedure definition, like ___stdcall.

(define-external (foo (c-string x)) int (string-length x))

The second form of define—external can be used to define variables that are accessible from foreign
code. It declares a global variable named by the symbol NAME that has the type TYPE. INIT can be an
arbitrary expression that is used to initialize the variable. NAME is accessible from Scheme just like any other
foreign variable defined by define-foreign-variable.

(define-external foo int 42)
((foreign—lambda* int ()
)) ==> 42

Note: don't be tempted to assign strings or bytevectors to external variables. Garbage collection moves those
objects around, so it is very bad idea to assign pointers to heap-data. If you have to do so, then copy the data

object into statically allocated memory (for example by using object—-evict).

Results of type scheme-object returned by define—-external are always allocated in the secondary
heap, that is, not in the stack.

32.2 C_callback

[C function] C_word C_callback (C_word closure, int argc)
This function can be used to invoke the Scheme procedure closure. argc should contain the number of

arguments that are passed to the procedure on the temporary stack. Values are put onto the temporary stack
with the C__save macro.

32 Callbacks 186

CHICKEN User's Manual - The User's Manual

32.3 C_callback_adjust_stack

[C function] void C_callback_adjust_stack (C_word *ptr, int size)

The runtime-system uses the stack as a special allocation area and internally holds pointers to estimated limits
to distinguish between Scheme data objects inside the stack from objects outside of it. If you invoke callbacks
at wildly differing stack-levels, these limits may shift from invocation to invocation. Callbacks defined with
define—external will perform appropriate adjustments automatically, but if you invoke C_callback
manually, you should perform a C_callback_adjust_stack to make sure the internal limits are set
properly. pt r should point to some data object on the stack and s1ize is the number of words contained in
the data object (or some estimate). The call will make sure the limits are adjusted so that the value pointed to
by ptr is located in the stack.

Previous: Embedding

Next: Locations

32.3 C_callback adjust_stack 187

33 Locations

It is also possible to define variables containing unboxed C data, so called locations. It should be noted that
locations may only contain simple data, that is: everything that fits into a machine word, and double-precision
floating point values.

33.1 define-location

[syntax] (define-location NAME TYPE [INIT])

Identical to (define—-external NAME TYPE [INIT]), butthe variable is not accessible from outside
of the current compilation unit (it is declared static).

33.2 let-location

[syntax] (let-location ((NAME TYPE [INIT]) ...) BODY ...)

Defines a lexically bound location.

33.3 location

[syntax] (location NAME)
[syntax] (location X)

This form returns a pointer object that contains the address of the variable NAME. If the argument to
location is not a location defined by define—-location, define—-external or let-location,
then

(location X)

is essentially equivalent to

(make—-locative X)

(See the manual chapter or 1ocat ives for more information about locatives.

Note that (location X) may be abbreviated as #$X.

(define-external foo int)
((foreign—lambda* void (((c-pointer int) ip)))
(location foo))
foo ==> 123

This facility is especially useful in situations, where a C function returns more than one result value:

#>
#include <math.h>
<#

(define modf
(foreign—-lambda double double (c-pointer double)))

33 Locations 188

CHICKEN User's Manual - The User's Manual

(let-location ([i doublel])
(let ([f (modf 1.99 (location i))1)
(print i £)))

See location and c-string* for a tip on returning a c-string* type.

location returns a value of type c-pointer, when given the name of a callback-procedure defined with
define-external.

Previous: Callbacks

Next: Other support procedures

33.3 location 189

http://chicken.wiki.br/location-and-c-string-star

34 Other support procedures

34.1 argc+argv

[procedure] (argctargv)

Returns two values: an integer and a foreign-pointer object representing the argc and argv arguments
passed to the current process.

Previous: Locations

Next: C interface

34 Other support procedures 190

35 C interface

The following functions and macros are available for C code that invokes Scheme or foreign procedures that
are called by Scheme:

35.1 C_save

[C macro] void C_save (C_word x) :

Saves the Scheme data object x on the temporary stack.

35.2 C _restore

[C macro] void C_restore

Pops and returns the topmost value from the temporary stack.

35.3 C_fix

[C macro] C_word C_fix (int integer)

35.4 C_make_character

[C macro] C_word C_make_character (int char_code)

35.5 C_SCHEME_END_OF LIST

[C macro] C_SCHEME_END_OF_LIST

35.6 C_word C_SCHEME_END_OF_FILE

[C macro] C_SCHEME_END_OF_FILE

35.7 C_word C_SCHEME_FALSE

[C macro] C_SCHEME_FALSE

35.8 C_word C_SCHEME_TRUE

[C macro] C_SCHEME_TRUE

These macros return immediate Scheme data objects.

35 C interface 191

CHICKEN User's Manual - The User's Manual

35.9 C_string

[C function] C_word C_string (C_word **ptr, int length, char *string)

35.10 C_string2

[C function] C_word C_string2 (C_word **ptr, char *zero_terminated_string)

35.11 C_intern2

[C function] C_word C_intern2 (C_word **ptr, char *zero_terminated_string)

35.12 C_intern3

[C function] C_word C_intern3 (C_word **ptr, char *zero_terminated_string, C_word initial_value)

35.13 C_pair

[C function] C_word C_pair (C_word **ptr, C_word car, C_word cdr)

35.14 C_flonum

[C function] C_word C_flonum (C_word **ptr, double number)

35.15 C_int_to_num

[C function] C_word C_int_to_num (C_word **ptr, int integer)

35.16 C_mpointer

[C function] C_word C_mpointer (C_word **ptr, void *pointer)

35.17 C_vector

[C function] C_word C_vector (C_word **ptr, int length, ...)

35.18 C_list

[C function] C_word C_list (C_word **ptr, int length, ...)

These functions allocate memory from pt r and initialize a fresh data object. The new data object is returned.
ptr should be the address of an allocation pointer created with C_alloc.

35.9 C_string 192

CHICKEN User's Manual - The User's Manual

35.19 C _alloc

[C macro] C_word* C_alloc (int words)

Allocates memory from the C stack (C_alloc) and returns a pointer to it. words should be the number of
words needed for all data objects that are to be created in this function. Note that stack-allocated data objects

have to be passed to Scheme callback functions, or they will not be seen by the garbage collector. This is
really only usable for callback procedure invocations, make sure not to use it in normal code, because the
allocated memory will be re-used after the foreign procedure returns. When invoking Scheme callback
procedures a minor garbage collection is performed, so data allocated with C_al1loc will already have

moved to a safe place.

Note that C_alloc is really just a wrapper around alloca, and can also be simulated by declaring a

stack-allocated array of C_words:

35.20 C_SIZEOF _LIST

[C macro] int C_SIZEOF_LIST (int length)

35.21 C_SIZEOF_STRING

[C macro] int C_SIZEOF_STRING (int length)

35.22 C_SIZEOF_VECTOR

[C macro] int C_SIZEOF_VECTOR (int length)

35.23 C_SIZEOF_INTERNED_SYMBOL

[C macro] int C_SIZEOF_INTERNED_SYMBOL (int length)

35.24 C_SIZEOF_PAIR

[C macro] int C_SIZEOF_PAIR

35.25 C_SIZEOF_FLONUM

[C macro] int C_SIZEOF_FLONUM

35.26 C_SIZEOF_POINTER

[C macro] int C_SIZEOF_POINTER

35.19 C_alloc

193

CHICKEN User's Manual - The User's Manual

35.27 C_SIZEOF_LOCATIVE

[C macro] int C_SIZEOF_LOCATIVE

35.28 C_SIZEOF_TAGGED_POINTER

[C macro] int C_SIZEOF_TAGGED_POINTER

These are macros that return the size in words needed for a data object of a given type.

35.29 C_character_code

[C macro] int C_character_code (C_word character)

35.30 C_unfix

[C macro] int C_unfix (C_word fixnum)

35.31 C_flonum_magnitude

[C macro] double C_flonum _magnitude (C_word flonum)

35.32 C_c_string

[C function] char* C_c_string (C_word string)

35.33 C_num_to _int

[C function] int C_num_to_int (C_word fixnum_or_flonum)

35.34 C_pointer_address

[C function] void* C_pointer_address (C_word pointer)

These macros and functions can be used to convert Scheme data objects back to C data. Note that
C_c_string () returns a pointer to the character buffer of the actual Scheme object and is not

zero-terminated.

35.35 C_header_size

[C macro] int C_header_size (C_word x)

35.27 C_SIZEOF_LOCATIVE

194

CHICKEN User's Manual - The User's Manual

35.36 C_header bits

[C macro] int C_header_bits (C_word x)

Return the number of elements and the type-bits of the non-immediate Scheme data object x.

35.37 C_block_item

[C macro] C_word C_block_item (C_word x, int index)
This macro can be used to access slots of the non-immediate Scheme data object x. index specifies the

index of the slot to be fetched, starting at 0. Pairs have 2 slots, one for the car and one for the cdr. Vectors
have one slot for each element.

35.38C u_i_car

[C macro] C_word C_u_i_car (C_word Xx)

35.39C u i _cdr

[C macro] C_word C_u_i_cdr (C_word x)

Aliases for C_block_item(x, 0) and C_block_item(x, 1), respectively.

35.40 C_data_pointer

[C macro] void* C_data_pointer (C_word x)

Returns a pointer to the data-section of a non-immediate Scheme object.

35.41 C_make_header

[C macro] C_word C_make_header (C_word bits, C_word size)

A macro to build a Scheme object header from its bits and size parts.

35.42 C_mutate

[C function] C_word C_mutate (C_word *slot, C_word wval)

Assign the Scheme value val to the location specified by s1ot. If the value points to data inside the nursery
(the first heap-generation), then the garbage collector will remember to handle the data appropriately.
Assigning nursery-pointers directly will otherwise result in lost data. Note that no copying takes place at the
moment when C_mutate is called, but later - at the next (minor) garbage collection.

35.36 C_header_bits 195

CHICKEN User's Manual - The User's Manual

35.43 C_symbol_value

[C macro] C_word C_symbol_value (C_word symbol)

Returns the global value of the variable with the name symbo1. If the variable is unbound
C_SCHEME_UNBOUND is returned. You can set a variable's value with
C_mutate (&C_symbol_value (SYMBOL), VALUE).

35.44 C_gc_protect

[C function] void C_gc_protect (C_word *ptrs([], int n)

Registers n variables at address pt rs to be garbage collection roots. The locations should not contain
pointers to data allocated in the nursery, only immediate values or pointers to heap-data are valid. Any
assignment of potential nursery data into a root-array should be done via C_mutate (). The variables have
to be initialized to sensible values before the next garbage collection starts (when in doubt, set all locations in
ptrsto C_SCHEME_UNDEFINED) C_gc_protect may not called before the runtime system has been
initialized (either by CHICKEN_initialize, CHICKEN_run or CHICKEN_invoke.

For a slightly simpler interface to creating and using GC roots see CHICKEN_new_gc_root.

35.45 C_gc_unprotect

[C function] void C_gc_unprotect (int n)

Removes the last n registered variables from the set of root variables.

35.46 C_pre_gc_hook

[C Variable] void (*C_pre_gc_hook) (int mode)

If not NULL, the function pointed to by this variable will be called before each garbage collection with a flag
indicating what kind of collection was performed (either 0 for a minor collection or 2 for a resizing
collection). A "resizing" collection means a secondary collection that moves all live data into a enlarged (or
shrinked) heap-space. Minor collections happen very frequently, so the hook function should not consume too
much time. The hook function may not invoke Scheme callbacks.

Note that resizing collections may be nested in normal major collections.

35.47 C_post_gc_hook

[C Variable] void (*C_post_gc_hook) (int mode, long ms)

If not NULL, the function pointed to by this variable will be called after each garbage collection with a flag
indicating what kind of collection was performed (either 0 for a minor collection, 1 for a major collection or
2 for a resizing collection). Minor collections happen very frequently, so the hook function should not
consume too much time. The hook function may not invoke Scheme callbacks. The ms argument records the
number of milliseconds required for the garbage collection, if the collection was a major one. For minor
collections the value of the ms argument is undefined.

35.43 C_symbol_value 196

CHICKEN User's Manual - The User's Manual

35.48 An example for simple calls to foreign code involving
callbacks

% cat foo.scm
#>
extern int callout (int, int, int);

<#

(define callout (foreign-safe-lambda int "callout" int int int))

(define-external (callin (scheme-object xyz)) int
(print "This is 'callin': " xyz)
123)

(print (callout 1 2 3))

)

% cat bar.c
#include <stdio.h>
#include "chicken.h"

extern int callout (int, int, int);
extern int callin(C_word x);

int callout (int x, int y, int 2z)

{
C_word *ptr = C_alloc(C_SIZEOF_LIST(3));
C_word 1st;

printf ("This is 'callout': %d, %d, %d\n", x, y, z);
1lst = C_list (&ptr, 3, C_fix(x), C_fix(y), C_fix(z));
return callin(lst); /* Note: “callin' will have GC'd the data in ‘ptr' */

% csc foo.scm bar.c -o foo

% foo

This is 'callout': 1, 2, 3
This is 'callin': (1 2 3)
123

35.49 Notes:

Scheme procedures can call C functions, and C functions can call Scheme procedures, but for every pending
C stack frame, the available size of the first heap generation (the nursery) will be decreased, because the C
stack is identical to the nursery. On systems with a small nursery this might result in thrashing, since the C
code between the invocation of C from Scheme and the actual calling back to Scheme might build up several
stack-frames or allocates large amounts of stack data. To prevent this it is advisable to increase the default
nursery size, either when compiling the file (using the —nursery option) or when running the executable
(using the - : s runtime option).

Calls to Scheme/C may be nested arbitrarily, and Scheme continuations can be invoked as usual, but keep in
mind that C stack frames will not be recovered, when a Scheme procedure call from C does not return
normally.

When multiple threads are running concurrently, and control switches from one thread to another, then the
continuation of the current thread is captured and saved. Any pending C stack frame still active from a
callback will remain on the stack until the threads is re-activated again. This means that in a multithreading
situation, when C callbacks are involved, the available nursery space can be smaller than expected. So doing

35.48 An example for simple calls to foreign code involving callbacks 197

CHICKEN User's Manual - The User's Manual

many nested Scheme C Scheme calls can reduce the available memory up to the point of thrashing. It is
advisable to have only a single thread with pending C stack-frames at any given time.

Pointers to Scheme data objects should not be stored in local or global variables while calling back to Scheme.
Any Scheme object not passed back to Scheme will be reclaimed or moved by the garbage collector.

Calls from C to Scheme are never tail-recursive.

Continuations captured via call-with-current-continuation and passed to C code can be invoked
like any other Scheme procedure.

Previous: Other support procedures

Next: chicken-setup

35.49 Notes: 198

36 chicken-setup

36.1 Extension libraries

Extension libraries (eggs) are extensions to the core functionality provided by the basic CHICKEN system, to
be built and installed separately. The mechanism for loading compiled extensions is based on dynamically
loadable code and as such is only available on systems on which loading compiled code at runtime is
supported. Currently these are most UNIX-compatible platforms that provide the 1 ibd1 functionality like
Linux, Solaris, BSD, Mac OS X and Windows using Cygwin.

Note: Extension may also be normal applications or shell scripts, but are usually libraries.

chicken-setup will download the source code for extension automatically from the canonical server at
http://www.call-with-current-continuation.org/eggs if the requested egg does not exist in the current directory.
Various command-line options exist for customizing the process and/or retrieving the egg from other locations
or in other formats.

36.2 Installing extensions

To install an extension library, run the chicken-setup program with the extension name as argument. The
extension archive is downloaded, its contents extracted and the contained setup script is executed. This setup
script is a normal Scheme source file, which will be interpreted by chicken-setup. The complete
language supported by cs1i is available, and the library units srfi-1 regex utils posix tcp are
loaded. Additional libraries can be loaded at run-time.

The setup script should perform all necessary steps to build the new library (or application). After a successful
build, the extension can be installed by invoking one of the procedures install-extension,
install-programor install-script. These procedures will copy a number of given files into the
extension repository or in the path where the CHICKEN executables are located (in the case of executable
programs or scripts). Additionally the list of installed files, and user-defined metadata is stored in the
repository.

If no extension name is given on the command-line, and if none of the options —1ist, ~-version,

-repository (without argument), ~-program-path (without argument), ~-fetch, ~-fetch-tree or
-docindex is given, then all . setup scripts in the current directory are processed.

36.3 Creating extensions

Extensions can be created by creating an (optionally gzipped) tar archive named EXTENSION.egg
containing all needed files plus a . setup script in the root directory. After chicken-setup has extracted
the files, the setup script will be invoked. There are no additional constraints on the structure of the archive,
but the setup script has to be in the root path of the archive.

36.4 Procedures and macros available in setup scripts

36 chicken-setup 199

http://www.call-with-current-continuation.org/eggs

CHICKEN User's Manual - The User's Manual

36.4.1 install-extension

(install-extension ID FILELIST [INFOLIST])

Installs the extension library with the name ID. All files given in the list of strings FILELIST will be copied
to the extension repository. It should be noted here that the extension id has to be identical to the name of the

file implementing the extension. The extension may load or include other files, or may load other extensions
at runtime specified by the require—at-runtime property.

FILELIST may be a filename, a list of filenames, or a list of pairs of the form (SOURCE DEST) (if you
want to copy into a particular sub-directory - the destination directory will be created as needed). If DEST is a
relative pathname, < it will be copied into the extension repository.

The optional argument INFOLIST should be an association list that maps symbols to values, this list will be

stored as ID.setup—info at the same location as the extension code. Currently the following properties are
used:

36.4.1.1 syntax
[extension property] (syntax)
Marks the extension as syntax-only. No code is compiled, the extension is intended as a file containing

macros to be loaded at compile/macro-expansion time.

36.4.1.2 require-at-runtime

[extension property] (require-at-runtime ID ...)
Specifies extensions that should be loaded (via require) at runtime. This is mostly useful for syntax

extensions that need additional support code at runtime.

36.4.1.3 version

[extension property] (version STRING)

Specifies version string.

36.4.1.4 documentation

[extension property] (documentation FILENAME)
The filename of a HTML document containing extension-specific documentation. This file should be given in

the file-list passed to install-extension and a link to it will be automatically included in the index
page (accessible via chicken-setup -docindex).

36.4.1.5 examples

[extension property] (examples FILENAME ...)

36.4.1 install-extension 200

CHICKEN User's Manual - The User's Manual

Copies the given files into the examples directory, which is usually
Sprefix/share/chicken/examples or (make-pathname (chicken—home)
"examples")).

Note that the files listed in this property should not be listed in the normal list of files to install passed to

install-extension. This is the only exception - other files that are installed in the repository must be
given in the file list.

36.4.1.6 exports

[extension property] (exports EXPORT ...)
Add export-information to the generated extension-information. EXPORT may be a symbol naming an

exported toplevel variable or a string designating a file with exported variables, as generated by the
—emit-exports option or the emit-exports declaration specifier.

36.4.1.7 static

[extension property] (static STRING)
If the extension also provides a static library, then STRING should contain the name of that library. Used by

csc when compiling with the —~static-extensions option.

36.4.1.8 static-options

[extension property] (static-options STRING)

Additional options that should be passed to the linker when linking with the static version of an extension (see
static above). Used by csc when compiling with the ~static—-extensions option.

All other properties are currently ignored. The FILELIST argument may also be a single string.

36.4.2 install-program
[procedure] (install-program ID FILELIST [INFOLIST])

Similar to install-extension, butinstalls an executable program in the executable path (usually
/usr/local/bin).

36.4.3 install-script
[procedure] (install-script ID FILELIST [INFOLIST])

Similar to install-program, but additionally changes the file permissions of all files in FILELIST to
executable (for installing shell-scripts).

36.4.1 install-extension 201

CHICKEN User's Manual - The User's Manual

36.4.4 run

[syntax] (run FORM ...)

Runs the shell command FORM, which is wrapped in an implicit quasiquote. (run (csc ...)) is

treated specially and passes —v (if —verbose has been given to chicken-setup) and —~feature
compiling-extension options to the compiler.

36.4.5 compile

[syntax] (compile FORM ...)

Equivalentto (run (csc FORM ...)).

36.4.6 make

[syntax] (make ((TARGET (DEPENDENT ...) COMMAND ...) ...) ARGUMENTS)
A make macro that executes the expressions COMMAND . . ., when any of the dependents DEPENDENT

have changed, to build TARGET. This is the same as the make extension, which is available separately. For
more information, see make.

36.4.7 patch

[procedure] (patch WHICH REGEX SUBST)
Replaces all occurrences of the regular expression REGEX with the string SUBST, in the file given in WHICH.

If WHICH is a string, the file will be patched and overwritten. If WHICH is a list of the form OLD NEW, then a
different file named NEW will be generated.

36.4.8 copy-file

[procedure] (copy-file FROM TO)

Copies the file or directory (recursively) given in the string FROM to the destination file or directory TO.

36.4.9 move-file

[procedure] (move-file FROM TO)

Moves the file or directory (recursively) given in the string FROM to the destination file or directory TO.

36.4.10 remove-file*

[procedure] (remove-file* PATH)

Removes the file or directory given in the string PATH.

36.4.4 run 202

http://www.call-with-current-continuation.org/eggs/make.html

CHICKEN User's Manual - The User's Manual

36.4.11 find-library

[procedure] (find-library NAME PROC)

Returns #t if the library named 11bNAME. [a| so] (unix) or NAME . 1ib (windows) could be found by

compiling and linking a test program. PROC should be the name of a C function that must be provided by the
library. If no such library was found or the function could not be resolved, # £ is returned.

36.4.12 find-header

[procedure] (find-header NAME)

Returns #t if a C include-file with the given name is available, or # £ otherwise.

36.4.13 try-compile

[procedure] (try-compile CODE #!key cc cflags ldflags compile-only c++)

Returns #t if the C code in CODE compiles and links successfully, or # £ otherwise. The keyword parameters
cc (compiler name, defaults to the C compiler used to build this system), cflags and 1dflags accept

additional compilation and linking options. If compile-only is true, then no linking step takes place. If the
keyword argument c++ is given and true, then the code will be compiled in C++ mode.

36.4.14 create-directory

[procedure] (create-directory PATH)

Creates the directory given in the string PATH, with all parent directories as needed.

36.4.15 chicken-prefix

[parameter] chicken-prefix

The installation prefix specified when CHICKEN was built.

36.4.16 installation-prefix

[parameter] installation-prefix

An alternative installation prefix that will be prepended to extension installation paths if specified. It is set by
the ~install-prefix option or environment variable CHICKEN_INSTALL_PREFIX.

36.4.17 program-path

[parameter] (program-path [PATH])

Holds the path where executables are installed and defaults to either SCHICKEN_PREFIX/bin, if the
environment variable CHICKEN_PREF IX is set or the path where the CHICKEN binaries (chicken, csi,

36.4.11 find-library 203

CHICKEN User's Manual - The User's Manual

etc.) are installed.

36.4.18 setup-root-directory

[parameter] (setup-root-directory [PATH])

Contains the path of the directory where chicken—-setup was invoked.

36.4.19 setup-build-directory

[parameter] (setup-build-directory [PATH])

Contains the path of the directory where the extension is built. This is not necessarily identical to
setup-root-directory.

36.4.20 setup-verbose-flag

[parameter] (setup-verbose-flag [BOOL])

Reflects the setting of the —verbose option, i.e. is #t, if —~-verbose was given.

36.4.21 setup-install-flag

[parameter] (setup-install-flag [BOOL])

Reflects the setting of the ——no-install option,i.e.is #£f, if -no—-install was given.

36.4.22 required-chicken-version

[procedure] (required-chicken-version VERSION)

Signals an error if the version of CHICKEN that this script runs under is lexicographically less than
VERSION (the argument will be converted to a string, first).

36.4.23 required-extension-version

[procedure] (required-extension-version EXTENSION1l VERSION1 ...)
Checks whether the extensions EXTENSION1 ... are installed and at least of version VERSION1
The test is made by lexicographically comparing the string-representations of the given version with the

version of the installed extension. If one of the listed extensions is not installed, has no associated version
information or is of a version older than the one specified.

36.4.24 cross-chicken

[procedure] (cross-chicken)

36.4.17 program-path 204

CHICKEN User's Manual - The User's Manual

Returns #t if this system is configured for cross-compilation or # £ otherwise.

36.4.25 host-extension

[parameter] host-extension

For a cross-compiling CHICKEN, when compiling an extension, then it should be built for the host
environment (as opposed to the target environment). This parameter is controlled by the
-host-extension command-line option. A setup script should perform the proper steps of compiling any
code by passing ~host when invoking csc or using the compi 1e macro.

36.5 Examples for extensions

The simplest case is a single file that does not export any syntax. For example

;,77; hello.scm

(define (hello name)
(print name))

We need a . setup script to build and install our nifty extension:

;7,77 hello.setup

;; compile the code into a dynamically loadable shared object
;; (will generate hello.so)
(compile -s hello.scm)

;; Install as extension library
(install-extension 'hello)

After entering

$ chicken-setup hello

at the shell prompt (and in the same directory where the two files exist), the file hello.scm will be
compiled into a dynamically loadable library. If the compilation succeeds, hello. so will be stored in the
repository, together with a file named hello.setup—-info containing an a-list with metadata. If no
extension name is given to chicken—-setup, it will simply execute the first file with the . setup extension
it can find.

Use it like any other CHICKEN extension:

$ csi —-qg

#;1> (require-extension hello)

; loading /usr/local/lib/chicken/1/hello.so ...
#;2> (hello "me")

Hello, me!

#; 3>

Here we create a simple application:

; 7,7, hello2.scm

(print)
(for-each (lambda (x) (printf %)) (command-line-arguments))

36.4.24 cross-chicken 205

CHICKEN User's Manual - The User's Manual

(print)
We also need a setup script:

;777 hello2.setup

(compile hello2.scm) ; compile “hellol2'
(install-program 'hello2) ; name of the extension and files to be installed

To use it, just run chicken-setup in the same directory:

$ chicken-setup
(Here we omit the extension name)

Now the program hel1o2 will be installed in the same location as the other CHICKEN tools (like
chicken, csi, etc.), which will normally be /usr/local/bin. Note that you need write-permissions for
those locations and may have to run chicken-setup with administrative rights.

Uninstallation is just as easy:

$ chicken-setup -uninstall hello2

chicken-setup provides a make macro, so build operations can be of arbitrary complexity. When
running chicken-setup with an argument NAME, for which no associated file NAME . setup, NAME . egg
or NAME . scm exists will ask you to download the extension via HTTP from the default URL
http://www.call-with-current-continuation.org/eggs. You can use the ~host option to specify an alternative
source location. Extensions that are required to compile and/or use the requested extension are downloaded
and installed automatically.

If the given extension name contains a path prefix and the ~host option is given, then chicken-setup
can also download and install eggs from an arbitrary HTTP server. Alternatively you can pass a full URL
(including the http: // prefix. Note that no dependency checks are done when downloading eggs directly
with the URL syntax.

Finally a somewhat more complex example: We want to package a syntax extension with additional support
code that is to be loaded at run-time of any Scheme code that uses that extension. We create a glass lambda, a
procedure with free variables that can be manipulated from outside:

;7,77 glass.scm

(define-macro (glass—lambda llist vars . body)
;; Low—-level macros are fun!
(let ([lvar (gensym)]
[svar (gensym)]
[x (gensym)]
ly (gensym)]
lyn (gensym)])
" (let , (map (lambda (v) (list v #f)) vars)
(define (,svar ,x . ,Vy)
let* ([fyn (pair? ,y)]
and ,yn (caf,yyX)])

case ,x(
lé&nnda (V)
if ,yn T, vl
set! ,v ,vy) (
V) o))
vars)
else (exfror S, X)))))

(define ,lvar (lambda ,1list ,@body))

36.5 Examples for extensions 206

http://www.call-with-current-continuation.org/eggs

CHICKEN User's Manual - The User's Manual

(extend-procedure ,lvar ,svar))))

Here some support code that needs to be loaded at runtime:
;777 glass-support.scm
(require—-extension lolevel)

(define glass-lambda-accessor procedure-data)
(define (glass—-lambda-ref gl v) ((procedure-data gl) v))
(define (glass-lambda-set! gl v x) ((procedure-data gl) v x))

The setup script looks like this:

(compile -s glass-support.scm)

(install-extension
'glass
' ()
'((syntax) (require-at-runtime glass-support)))

The invocation of install-extension provides the files that are to be copied into the extension
repository, and a metadata list that specifies that the extension glass is a syntax extension and that, if it is
declared to be used by other code (either with the require—-extension or require-for-syntax
form), then client code should perform an implicit (require 'glass-support) at startup.

This can be conveniently packaged as an egg:
$ tar cfz glass.egg glass.setup glass.scm glass—-support.scm
And now we use it:

$ chicken-setup glass

$ csi —quiet

#;1> (require-extension glass)

; loading /usr/local/lib/chicken/1/glass.scm ...

; loading /usr/local/lib/chicken/1/glass—support.so ...
#;2> (define foo (glass-lambda (x) (y) (+ x y)))

#;3> (glass—-lambda-set! foo 'y 99)

#;4> (foo 33)

132

36.6 chicken-setup reference

Available options:

-h -help
Show usage information and exit.

-V -version
Display version and exit.

-R —-repository [PATHNAME]
When used without an argument, the path of the extension repository is displayed on standard output.
When given an argument, the repository pathname (and the repository—-path parameter) will be
set to PATHNAME for all subsequent operations. The default repository path is the installation library
directory (usually /usr/local/lib/chicken), or (if set) the directory given in the environment
variable CHICKEN_REPOSITORY. PATHNAME should be an absolute pathname.

-P —-program-path [PATHNAME]

36.6 chicken-setup reference 207

CHICKEN User's Manual - The User's Manual

When used without an argument, the path for executables is displayed on standard output. When
given an argument, the program path for installing executables and scripts will be set to PATHNAME
for all subsequent operations. PATHNAME should be an absolute pathname.

—-h -host HOSTNAME [: PORT]
Specifies alternative host for downloading extensions, optionally with a TCP port number (which
defaults to 80).

-u —uninstall EXTENSION
Removes all files that were installed for EXTENSION from the file-system, together with any
metadata that has been stored.

-1 —-1list [NAME ...]
List all installed extensions or show extension information.

—-r —run FILENAME
Load and execute given file.

-s —-script FILENAME
Executes the given Scheme source file with all remaining arguments and exit. The she-bang shell
script header is recognized, so you can write Scheme scripts that use chicken-setup just as with
csi.

—e —eval EXPRESSION
Evaluates the given expression(s)

-v —verbose
Display additional debug information

-k —-keep
Keep temporary files and directories

-c —-csc-option OPTION
Passes OPTION as an extra argument to invocations of the compiler-driver (csc); this works only if
cscisinvoked as (run (csc ...))

—-d —-dont-ask
Do not ask the user before trying to download required extensions

-n —no-install
Do not install generated binaries and/or support files; any invocations of install-program,
install-extensionor install-script will be be no-ops

-1 —-docindex
Displays the path to the index-page of any installed extension-documentation; if the index page does
not exist, it is created

-t —test EXTENSION
return success if all given extensions are installed

—1s EXTENSION
List installed files for extension

—fetch-tree
Download and print the repository catalog

—-create-tree DIRECTORY
Create a fresh, minimal repository catalog and writes it to stdout

-t —-test
If the extension sources contain a directory named tests and this directory includes a file named
run. scm then this file is executed (with test s being the current working directory)

—-tree FILENAME
Download and show the repository catalog

—svn URL
Fetch extension from Subversion repository

—-revision REV
Specifies SVN revision to check out

—local PATHNAME
Fetch extension from local file

—install-prefix PATHNAME

36.6 chicken-setup reference 208

http://subversion.tigris.org

CHICKEN User's Manual - The User's Manual

Specify alternative installation prefix (for packaging)
—host-extension

Compile extension in "host" mode (sets the parameter host-extension to #f)
-build-prefix PATHNAME

Location where chicken-setup will create egg build directories (default: the value of environment

variable CHICKEN_TMPDIR, or /tmp/chicken—- {MAJOR-VERSION-build-{USER}})
—download-path PATHNAME

Location where chicken-setup will save downloaded files (default: build-prefix/downloads)

Ignore all following arguments

Note that the options are processed exactly in the order in which they appear in the command-line.

36.7 Windows notes

chicken-setup works on Windows, when compiled with Visual C++, but depends on the tar and
gunzip tools to extract the contents of an egg. The best way is to download an egg either manually (or with
chicken-setup -fetch) and extract its contents with a separate program (like winzip). the
CHICKEN_REPOSITORY environment variable has to be set to a directory where your compiled extensions
should be located.

The . setup scripts will not always work under Windows, and the extensions may require libraries that are
not provided for Windows or work differently. Under these circumstances it is recommended to perform the
required steps to build an extension manually.

The required UNIX tools are also available as Windows binaries. Google or ask on the CHICKEN mailing list
if you need help locating them.

36.8 Security

When extensions are downloaded and installed one is executing code from potentially compromised systems.
This applies also when chicken-setup executes system tests for required extensions. As the code has
been retrieved over the network effectively untrusted code is going to be evaluated. When chicken-setup
is run as root the whole system is at the mercy of the build instructions (note that this is also the case every
time you install software via sudo make install, so this is not specific to the CHICKEN extension
mechanism).

Security-conscious users should never run chicken-setup as root. A simple remedy is to set the
environment variable CHICKEN_REPOSITORY, which will transparently place the repository at an arbitrary
user-selected location. Alternatively obtain write/execute access to the default location of the repository
(usually /usr/local/lib/chicken) to avoid running as root.

36.9 Other modes of installation

It is possible to install extensions directly from a Subversion repository or from a local checkout by using the
—-svn or —local options. By using either the svn client program (which must be installed) or file-system
operations, all necessary files will be copied into the current directory (creating a subdirectory named
EXTENSIONNAME.egg-dir), built and subsequently installed.

36.7 Windows notes 209

http://subversion.tigris.org

CHICKEN User's Manual - The User's Manual

Dependency information, which is necessary to ensure required extensions are also installed, is downloaded
automatically. If you have no internet connection or don't want to connect, you can also use a local file
containing the necessary dependency information. The —fet ch—t ree option retrieves the canonical
repository file at http://www.call-with-current-continuation.org/eggs/repository, writing it to stdout.
Redirecting this output into a file and passing the file via the —t ree option to chicken-setup allows you
now to use the local repository file:

Retrieve complete extension repository (big):

oe

cd /opt
svn co https://galinha.ucpel.tche.br/svn/chicken-eggs/release/3 eggs

oe

Get your own copy of the repository file:

)

% chicken-setup —-fetch-tree >~/my-repository-file

Now you can install eggs from your local checkout, with full dependency tracking and without being
connected to the internet:

% cd ~/tmp
% chicken-setup -local /opt/eggs —-tree ~/my-repository-file opengl

36.10 Linking extensions statically

The compiler and chicken-setup support statically linked eggs. The general approach is to generate an object
file or static library (in addition to the usual shared library) in your . setup script and install it along with the
dynamically loadable extension. The setup properties stat ic should contain the name of the object file (or
static library) to be linked, when csc gets passed the —static—extensions option:

(compile -s -02 -dl my-ext.scm) ; dynamically loadable "normal" version
(compile —-c -02 -dl my-ext -unit my-ext) ; statically linkable version
(install-extension

'my-ext

' ()

'((static)))

Note the use of the —unit option in the second compilation step: static linking must use static library units.
chicken-setup will perform platform-dependent file-extension translation for the file list, but does
currently not do that for the st at ic extension property.

To actually link with the static version of my—-ext, do:

% csc -static-extensions my-program.scm -uses my-ext

The compiler will try to do the right thing, but can not handle all extensions, since the ability to statically link
eggs is relatively new. Eggs that support static linking are designated as being able to do so. If you require a

statically linkable version of an egg that has not been converted yet, contact the extension author or the
CHICKEN mailing list.

Previous: Interface to external functions and variables

Next: Data representation

36.9 Other modes of installation 210

http://www.call-with-current-continuation.org/eggs/repository
https://galinha.ucpel.tche.br/svn/chicken-eggs/release/3

37 Data representation

Note: In all cases below, bits are numbered starting at 1 and beginning with the lowest-order bit.

There exist two different kinds of data objects in the CHICKEN system: immediate and non-immediate
objects.

37.1 Immediate objects

Immediate objects are represented by a single machine word, which is usually of 32 bits length, or 64 bits on
64-bit architectures. The immediate objects come in four different flavors:

fixnums, that is, small exact integers, where bit 1 is set to 1. This gives fixnums a range of 31 bits for the
actual numeric value (63 bits on 64-bit architectures).

characters, where bits 1-4 are equal to C_CHARACTER_BITS. The Unicode code point of the character is
encoded in bits 9 to 32.

booleans, where bits 1-4 are equal to C_BOOLEAN_BITS. Bit 5 is one for #t and zero for #f.

other values: the empty list, the value of unbound identifiers, the undefined value (void), and end-of-file. Bits
1-4 are equal to C_SPECIAL_BITS; bits 5 to 8 contain an identifying number for this type of object. The
following constants are defined: C_SCHEME_END_OF_LIST C_SCHEME_UNDEFINED
C_SCHEME_UNBOUND C_SCHEME_END_OF_FTILE

Collectively, bits 1 and 2 are known as the immediate mark bits. When bit 1 is set, the object is a fixnum, as
described above, and bit 2 is part of its value. When bit 1 is clear but bit 2 is set, it is an immediate object
other than a fixnum. If neither bit 1 nor bit 2 is set, the object is non-immediate, as described below.

37.2 Non-immediate objects

Non-immediate objects are blocks of data represented by a pointer into the heap. The pointer's immediate
mark bits (bits 1 and 2) must be zero to indicate the object is non-immediate; this guarantees the data block is
aligned on a 4-byte boundary, at minimum. Alignment of data words is required on modern architectures
anyway, so we get the ability to distinguish between immediate and non-immediate objects for free.

The first word of the data block contains a header, which gives information about the type of the object. The
header has the size of a machine word, usually 32 bits (64 bits on 64 bit architectures).

Bits 1 to 24 contain the length of the data object, which is either the number of bytes in a string (or
byte-vector) or the the number of elements for a vector or for a structure type.

Bits 25 to 28 contain the type code of the object.

Bits 29 to 32 contain miscellaneous flags used for garbage collection or internal data type dispatching. These
flags are:

C_GC_FORWARDING_BIT

Flag used for forwarding garbage collected object pointers.
C_BYTEBLOCK_BIT

37 Data representation 211

CHICKEN User's Manual - The User's Manual

Flag that specifies whether this data object contains raw bytes (a string or byte-vector) or pointers to
other data objects.

C_SPECIALBLOCK_BIT
Flag that specifies whether this object contains a special non-object pointer value in its first slot. An
example for this kind of objects are closures, which are a vector-type object with the code-pointer as
the first item.

C_8ALIGN_BIT
Flag that specifies whether the data area of this block should be aligned on an 8-byte boundary
(floating-point numbers, for example).

The actual data follows immediately after the header. Note that block-addresses are always aligned to the
native machine-word boundary. Scheme data objects map to blocks in the following manner:

pairs: vector-like object (type bits C_PAIR_TYPE), where the car and the cdr are contained in the first and
second slots, respectively.

vectors: vector object (type bits C_VECTOR_TYPE).
strings: byte-vector object (type bits C_STRING_TYPE).

procedures: special vector object (type bits C_CLOSURE_TYPE). The first slot contains a pointer to a
compiled C function. Any extra slots contain the free variables (since a flat closure representation is used).

flonums: a byte-vector object (type bits C_FLONUM_BITS). Slots one and two (or a single slot on 64 bit
architectures) contain a 64-bit floating-point number, in the representation used by the host systems C

compiler.

symbols: a vector object (type bits C_SYMBOL_TYPE). Slots one and two contain the toplevel variable value
and the print-name (a string) of the symbol, respectively.

ports: a special vector object (type bits C_PORT_TYPE). The first slot contains a pointer to a file- stream, if
this is a file-pointer, or NULL if not. The other slots contain housekeeping data used for this port.

structures: a vector object (type bits C_STRUCTURE_TYPE). The first slot contains a symbol that specifies
the kind of structure this record is an instance of. The other slots contain the actual record items.

pointers: a special vector object (type bits C_POINTER_TYPE). The single slot contains a machine pointer.

tagged pointers: similar to a pointer (type bits C_TAGGED_POINTER_TYPE), but the object contains an
additional slot with a tag (an arbitrary data object) that identifies the type of the pointer.

Data objects may be allocated outside of the garbage collected heap, as long as their layout follows the above
mentioned scheme. But care has to be taken not to mutate these objects with heap-data (i.e. non-immediate
objects), because this will confuse the garbage collector.

For more information see the header file chicken.h.

Previous: chicken-setup

Next: Bugs and limitations

37.2 Non-immediate objects 212

38 Bugs and limitations

e Compiling large files takes too much time.

e If a known procedure has unused arguments, but is always called without those parameters, then the
optimizer repairs the procedure in certain situations and removes the parameter from the lambda-list.

® port-position currently works only for input ports.

e |eaf routine optimization can theoretically result in code that thrashes, if tight loops perform
excessively many mutations.

Previous: Data representation

Next: FAQ

38 Bugs and limitations 213

39 FAQ

This is the list of Frequently Asked Questions about Chicken Scheme. If you have a question not answered
here, feel free to post to the chicken-users mailing list; if you consider your question general enough, feel free
to add it to this list.

39.1 General

39.1.1 Why yet another Scheme implementation?

Since Scheme is a relatively simple language, a large number of implementations exist and each has its
specific advantages and disadvantages. Some are fast, some provide a rich programming environment. Some
are free, others are tailored to specific domains, and so on. The reasons for the existence of CHICKEN are:

e CHICKEN is portable because it generates C code that runs on a large number of platforms.

e CHICKEN is extendable, since its code generation scheme and runtime system/garbage collector fits
neatly into a C environment.

e CHICKEN is free and can be freely distributed, including its source code.

e CHICKEN offers better performance than nearly all interpreter based implementations, but still
provides full Scheme semantics.

o As far as we know, CHICKEN is the first implementation of Scheme that uses Henry Baker's Cheney
on the M.T.A concept.

39.1.2 Why call it 'Chicken'?

According to felix:

Well, it's pretty boring, really: when I started the project and needed some name, the first
thing that met my eyes was the "chicken" (actually a disguised penguin) from the Wallace +
Gromit movie... And then there is of course the ever occurring chicken-and-egg problem with
bootstrapped compilers.

39.1.3 What should | do if | find a bug?

Send e-mail to felix @call-with-current-continuation.org with some hints about the problem, like version/build
of the compiler, platform, system configuration, code that causes the bug, etc.

39.1.4 Why are values defined with define-foreign-variable Or
define-constant Or define-inline not seen outside of the
containing source file?

Accesses to foreign variables are translated directly into C constructs that access the variable, so the Scheme
name given to that variable does only exist during compile-time. The same goes for constant- and
inline-definitions: The name is only there to tell the compiler that this reference is to be replaced with the
actual value.

39 FAQ 214

http://home.pipeline.com/~hbaker1/CheneyMTA.html
http://home.pipeline.com/~hbaker1/CheneyMTA.html
http://chicken.wiki.br/felix winkelmann
mailto:felix@call-with-current-continuation.org

CHICKEN User's Manual - The User's Manual

39.1.5 How does cond-expand know which features are registered in
used units?

Each unit used via (declare (uses ...)) isregistered as a feature and so a symbol with the unit-name
can be tested by cond-expand during macro-expansion-time. Features registered using the

register—feature! procedure are only available during run-time of the compiled file. You can use the
eval-when form to register features at compile time.

39.1.6 Why are constants defined by define-constant not honoured in
case constructs?

case expands into a cascaded if expression, where the first item in each arm is treated as a quoted list. So

the case macro can not infer wether a symbol is to be treated as a constant-name (defined via
define-constant) or a literal symbol.

39.1.7 How can | enable case sensitive reading/writing in user code?

To enable the read procedure to read symbols and identifiers case sensitive, you can set the parameter
case—-sensitivity to #t.

39.1.8 How can | change match-error-control during compilation?

Use eval-when, like this:

(eval-when (compile)
(match-error-control #:unspecified))

39.1.9 Why doesn't CHICKEN support the full numeric tower by default?

The short answer:

% chicken-setup numbers
% csi —-g
#;,1> (use numbers)

The long answer:
There are a number of reasons for this:

- For most applications of Scheme fixnums (exact word-sized integers) and flonums (64-bit floating-point
numbers) are more than sufficient;

- Interfacing to C is simpler;
- Dispatching of arithmetic operations is more efficient.

There is an extension based on the GNU Multiprecision Package that implements most of the full numeric
tower, see numbers.

39.1.5 How does cond-expand know which features are registered in used units? 215

http://chicken.wiki.br/numbers

CHICKEN User's Manual - The User's Manual

39.1.10 How can | specialize a generic function method to match
instances of every class?

Specializing a method on <ob ject> doesn't work on primitive data objects like numbers, strings, etc. so for
example

(define-method (foo (x <my-class>)) ...)
(define-method (foo (x <object>)) ...)
(foo 123)

will signal an error, because to applicable method can be found. To specialize a method for primitive objects,
use <top>:

(define-method (foo (x <top>)) ...)

39.1.11 Does CHICKEN support native threads?

Currently native threads are not supported. The runtime system is not reentrant, and the garbage-collection
algorithm would be made much more complicated, since the location of every object (whether it is allocated
on the stack or on the heap or completely outside the GC-able data space) has to be checked - this would be
rather complex and inefficient in a situation where multiple threads are involved.

39.1.12 Does CHICKEN support Unicode strings?

Yes, as an extension.

By default all string and character functions operate bytewise, so that characters with an iteger value greater
than 255 don't make much sense and multibyte UTF-8 characters are seen and manipulated as separate bytes,
analogous to what a C program would see.

You can enable UTF-8 support by placing the following two lines at the beginning of your source file (or in
your ~/.csirc for interactive sessions) before any other code, including other use directives:

(use iset syntax-case utf8)
(import utf8)

This will replace all builtin string operators with UTF-8-aware versions, that will treat strings as sequences of
multibyte UTF-8 characters, thus enabling you to represent and manipulate Unicode characters while
remaining compatible with most C libraries and system interfaces.

Most eggs should work correctly in utf§ mode, including the regex extension, but you still have the option of
working around incompatibilities of specific eggs by loading them before the (import utf8) directive. Keep in

mind that some operations, such as string-length, are much more expensive in utf8 (multibyte) mode, and
should be used with care. See the utf§ egg documentation for details.

39.1.13 Why do | get an "Error: invalid syntax: ..." using 'match’' and
'syntax-case'?

The built-in 'match’ macro is incompatible with 'syntax-case'. Use the matchable egg instead.

39.1.10 How can | specialize a generic function method to match instances of every class? 216

http://www.call-with-current-continuation.org/eggs/utf8.html
http://www.call-with-current-continuation.org/eggs/matchable.html

CHICKEN User's Manual - The User's Manual

39.2 Platform specific

39.2.1 How do | generate a DLL under MS Windows (tm) ?

Use csc in combination with the —d11 option:

C:\> csc foo.scm -dll

39.2.2 How do | generate a GUI application under Windows(tm)?

Invoke csc with the ~-windows option. Or pass the -DC_WINDOWS_GUT option to the C compiler and link
with the GUI version of the runtime system (that's 1ibchicken-gui[-static] .1lib. The GUI runtime
displays error messages in a message box and does some rudimentary command-line parsing.

39.2.3 Compiling very large files under Windows with the Microsoft C
compiler fails with a message indicating insufficient heap space.

It seems that the Microsoft C compiler can only handle files up to a certain size, and it doesn't utilize virtual
memory as well as the GNU C compiler, for example. Try closing running applications. If that fails, try to
break up the Scheme code into several library units.

39.2.4 When | run csi inside an emacs buffer under Windows, nothing
happens.

Invoke csi with the - : ¢ runtime option. Under Windows the interpreter thinks it is not running under
control of a terminal and doesn't print the prompt and does not flush the output stream properly.

39.2.5 | load compiled code dynamically in a Windows GUI application
and it crashes.

Code compiled into a DLL to be loaded dynamically must be linked with the same runtime system as the

loading application. That means that all dynamically loaded entities (including extensions built and installed
with chicken-setup) must be compiled with the —~-windows csc option.

39.2.6 On Windows, csc.exe seems to be doing something wrong.

The Windows development tools include a C# compiler with the same name. Either invoke csc.exe with a
full pathname, or put the directory where you installed CHICKEN in front of the MS development tool path in
the PATH environment variable.

39.2.7 On Windows source and/or output filenames with embedded
whitespace are not found.

39.2 Platform specific 217

CHICKEN User's Manual - The User's Manual

There is no current workaround. Do not use filenames with embedded whitespace for code. However,
command names with embedded whitespace will work correctly.

39.3 Customization

39.3.1 How do | run custom startup code before the runtime-system is
invoked?

When you invoke the C compiler for your translated Scheme source program, add the C compiler option
-DC_EMBEDDED, or pass —embedded to the csc driver program, so no entry-point function will be
generated (main ()). When your are finished with your startup processing, invoke:

CHICKEN_main (argc, argv, C_toplevel);

where C_toplevel is the entry-point into the compiled Scheme code. You should add the following
declarations at the head of your code:

#include
extern void C_toplevel (C_word,C_word,C_word) C_noret;

39.3.2 How can | add compiled user passes?

To add a compiled user pass instead of an interpreted one, create a library unit and recompile the main unit of
the compiler (in the file chicken. scm) with an additional uses declaration. Then link all compiler
modules and your (compiled) extension to create a new version of the compiler, like this (assuming all sources
are in the current directory):

)

% cat userpass.scm
;;;; userpass.scm — My very own compiler pass

(declare (unit userpass))

;; Perhaps more user passes/extensions are added:

(let ([old (user-pass)])
(user—-pass
(lambda (x)
(let ([x2 (do-something-with x)])
if old (
(old x2)
x2)))))

oe

csc —-C —x userpass.scm

csc chicken.scm -c -o chicken-extended.o -uses userpass

gcc chicken-extended.o support.o easyffi.o compiler.o optimizer.o batch-driver.o c-platform.o \
c-backend.o userpass.o ‘csc -ldflags -1libs® -o chicken-extended

oe

oe

On platforms that support it (Linux ELF, Solaris, Windows + VC++), compiled code can be loaded via
—extend just like source files (see 1oad in the User's Manual).

39.4 Compiled macros

39.2.7 On Windows source and/or output filenames with embeddedwhitespace are not found. 218

CHICKEN User's Manual - The User's Manual

39.4.1 Why is define-macro complaining about unbound variables?

Macro bodies that are defined and used in a compiled source-file are evaluated during compilation and so
have no access to anything created with define. Use define-for-syntax instead.

39.4.2 Why isn't 1oad properly loading my library of macros?

During compile-time, macros are only available in the source file in which they are defined. Files included via
include are considered part of the containing file.

39.4.3 Why is include unable to load my hygienic macros?

It is not sufficient for the included file to require the syntax-case extension. Call
(require—extension syntax-—case) before calling include.

39.4.4 Why are macros not visible outside of the compilation unit in
which they are defined?

Macros are defined during compile time, so when a file has been compiled, the definitions are gone. An
exception to this rule are macros defined with define-macro, which are also visible at run-time, i.e. in
eval. To use macros defined in other files, use the include special form.

39.5 Warnings and errors

39.5.1 Why does my program crash when | use callback functions (from
Scheme to C and back to Scheme again)?

There are two reasons why code involving callbacks can crash out of no apparent reason:

1. It is important to use foreign-safe-lambda/foreign-safe-lambda* for the C code that
is to call back into Scheme. If this is not done than sooner or later the available stack space will be
exhausted.

2. If the C code uses a large amount of stack storage, or if Scheme-to-C-to-Scheme calls are nested
deeply, then the available nursery space on the stack will run low. To avoid this it might be advisable
to run the compiled code with a larger nursery setting, i.e. run the code with —: s . . . and a larger
value than the default (for example —: s300k), or use the —nursery compiler option. Note that this
can decrease runtime performance on some platforms.

39.5.2 Why does the linker complain about a missing function
C..._toplevel?

This message indicates that your program uses a library-unit, but that the object-file or library was not
supplied to the linker. If you have the unit foo, which is contained in foo . o than you have to supply it to the
linker like this (assuming a GCC environment):

39.4.1 Why is define-macro complaining about unbound variables? 219

CHICKEN User's Manual - The User's Manual

o

% csc program.scm foo.o -0 program

39.5.3 Why does the linker complain about a missing function
_C_toplevel?

This means you have compiled a library unit as an application. When a unit-declaration (as in (declare
(unit ...)))is given, then this file has a specially named toplevel entry procedure. Just remove the
declaration, or compile this file to an object-module and link it to your application code.

39.5.4 Why does my program crash when | compile a file with —unsafe
or unsafe declarations?

The compiler option —unsafe or the declaration (declare (unsafe)) disable certain safety-checks to
improve performance, so code that would normally trigger an error will work unexpectedly or even crash the
running application. It is advisable to develop and debug a program in safe mode (without unsafe
declarations) and use this feature only if the application works properly.

39.5.5 Why do | get a warning when | define a global variable named
match?

Even when the mat ch unit is not used, the macros from that package are visible in the compiler. The reason
for this is that macros can not be accessed from library units (only when explicitly evaluated in running code).
To speed up macro-expansion time, the compiler and the interpreter both already provide the compiled
match-. .. macro definitions. Macros shadowed lexically are no problem, but global definitions of
variables named identically to (global) macros are useless - the macro definition shadows the global variable.

This problem can be solved using a different name or undefining the macro, like this:

(eval-when (compile eval) (undefine-macro! 'match))

39.5.6 Why don't toplevel-continuations captured in interpreted code
work?

Consider the following piece of code:

(define k (call-with-current-continuation (lambda (k) k)))
(k k)

When compiled, this will loop endlessly. But when interpreted, (k k) will return to the read-eval-print loop!
This happens because the continuation captured will eventually read the next toplevel expression from the
standard-input (or an input-file if loading from a file). At the moment k was defined, the next expression was
(k k).But when k is invoked, the next expression will be whatever follows after (k k). In other words,
invoking a captured continuation will not rewind the file-position of the input source. A solution is to wrap the
whole code into a (begin ...) expression, so all toplevel expressions will be loaded together.

39.5.2 Why does the linker complain about a missing function_C_..._toplevel? 220

CHICKEN User's Manual - The User's Manual

39.5.7 Why does define-reader-ctor not work in my compiled
program?

The following piece of code does not work as expected:

(eval-when (compile)
(define-reader-ctor 'integer->char integer->char))
(print #, (integer—->char 33))

The problem is that the compiler reads the complete source-file before doing any processing on it, so the
sharp-comma form is encountered before the reader-ctor is defined. A possible solution is to include the file
containing the sharp-comma form, like this:

(eval-when (compile)
(define-reader-ctor 'integer->char integer->char))

(include)

;;; other—-file.scm:
(print #, (integer->char 33))

39.5.8 Why do built-in units, such as srfi-1, srfi-18, and posix fail to load?

When you try to use a built-in unit such as sr£i-18, you may get the following error:

#,1> (use srfi-18)
; loading library srfi-18 ...
Error: (load-library) unable to load library
srfi-18
;, on a Mac
;; Linux

Another symptom is that (require 'srfi-18) will silently fail.

This typically happens because the Chicken libraries have been installed in a non-standard location, such as
your home directory. The workaround is to explicitly tell the dynamic linker where to look for your libraries:

export DYLD_LIBRARY PATH=~/scheme/chicken/lib:$DYLD_LIBRARY_ PATH ;; Mac
export LD_LIBRARY_PATH=~/scheme/chicken/lib:$LD_LIBRARY_PATH ;7 Linux

39.5.9 How can | increase the size of the trace shown when runtime
errors are detected?

When a runtime error is detected, Chicken will print the last entries from the trace of functions called (unless
your executable was compiled with the —no-trace option. By default, only 16 entries will be shown. To
increase this number pass the —: aN parameter to your executable.

39.6 Optimizations

39.5.7 Why does define-reader-ctor not work in my compiled program? 221

CHICKEN User's Manual - The User's Manual

39.6.1 How can | obtain smaller executables?

If you don't need eval or the stuff in the ext ras library unit, you can just use the 1ibrary unit:

(declare (uses library))
(dilsplay)

(Don't forget to compile with the ~explicit-use option) Compiled with Visual C++ this generates an
executable of around 240 kilobytes. It is theoretically possible to compile something without the library, but a
program would have to implement quite a lot of support code on its own.

39.6.2 How can | obtain faster executables?

There are a number of declaration specifiers that should be used to speed up compiled files: declaring
(standard-bindings) is mandatory, since this enables most optimizations. Even if some standard
procedures should be redefined, you can list untouched bindings in the declaration. Declaring
(extended-bindings) lets the compiler choose faster versions of certain internal library functions. This
might give another speedup. You can also use the the usual-integrations declaration, which is
identical to declaring standard-bindings and extended-bindings (note that
usual-integrations is set by default). Declaring (block) tells the compiler that global procedures
are not changed outside the current compilation unit, this gives the compiler some more opportunities for
optimization. If no floating point arithmetic is required, then declaring (number-type fixnum) can give
a big performance improvement, because the compiler can now inline most arithmetic operations. Declaring
(unsafe) will switch off most safety checks. If threads are not used, you can declare
(disable-interrupts). You should always use maximum optimizations settings for your C compiler.
Good GCC compiler options on Pentium (and compatible) hardware are: ~Os —-fomit-frame-pointer
-fno-strict-aliasing Some programs are very sensitive to the setting of the nursery (the first
heap-generation). You should experiment with different nursery settings (either by compiling with the
-nursery option or by using the —: s. . . runtime option).

39.6.3 Which non-standard procedures are treated specially when the
extended-bindings Or usual-integrations declaration or compiler
option is used?

The following standard bindings are handled specially, depending on optimization options and compiler
settings:

+ * — / quotient eg? eqv? equal? apply c...r values call-with-values
list-ref null? length not char? string? symbol? vector? pair? procedure?
boolean? number? complex? rational? real? exact? inexact? list? eof-object?
string-ref string-set! vector-ref vector-set! char=? char<? char>? char<=? char>=?
char—-numeric? char-alphabetic? char-whitespace? char-upper-case?
char-lower-case? char-upcae char-downcase list-tail assv memv memg assoc
member set-car! set-cdr! abs exp sin cos tan log asin acos atan sqgrt

zero? positive? negative? vector-length string-length char->integer
integer—->char inexact->exact = > < >= <= for-each map substring
string—append gcd lcm list exact->inexact string->number number->string
even? odd? remainder floor ceiling truncate round cons vector string
string=? string-ci=? make-vector call-with-current-continuation

write—-char read-string

The following extended bindings are handled specially:

39.6.1 How can | obtain smaller executables? 222

CHICKEN User's Manual - The User's Manual

bitwise-andbitwise-iorbitwise-xor bitwise-not bit-set? addl subl fx+ fx- fx*
fx/ fxmod fx= fx> fx>= fixnum? fxneqg fxmax fxmin fxand fxior fxxor fxnot fxshl
fxshr flonum? fp+ fp- fp* fp/ atom? fp= fp> fp>= fpneg fpmax fpmin
arithmetic-shift signum flush-output thread-specific thread-specific-set!
not-pair? null-1list? print print* u8vector->blob/shared
s8vector->blob/sharedul6vector->blob/shared sl6vector->blob/shared
u32vector->blob/shared s32vector->blob/shared f32vector->blob/shared
f6dvector->blob/sharedblock-ref blob-size u8vector-length s8vector-length
ul6vector-length sl6vector-length u32vector-length s32vector-length
f32vector-length f64vector-length u8vector-ref s8vector-ref ulbvector-ref
slevector-ref u32vector-ref s32vector-ref f32vector-ref f64vector-ref
u8vector-set! s8vector-set! ul6vector-set! slévector-set! u32vector-set!
s32vector-set! hash-table-ref block-set! number-of-slots first second third
fourthnull-pointer? pointer->object make-record-instance locative-ref
locative-set! locative? locative->object identity cpu-time error call/cc any?
substring=? substring-ci=? substring-index substring-index-ci

39.6.4 Can | load compiled code at runtime?

Yes. You can load compiled at code at runtime with 1oad just as well as you can load Scheme source code.
Compiled code will, of course, run faster.

To do this, pass to 1oad a path for a shared object. Use a form such as (1load "foo.so") andrun csc
-shared foo.scmto produce foo.so from foo.scm (at which point foo. scm will no longer be
required).

39.7 Garbage collection

39.7.1 Why does a loop that doesn't cons still trigger garbage
collections?

Under CHICKENSs implementation policy, tail recursion is achieved simply by avoiding to return from a
function call. Since the programs are CPS converted, a continuous sequence of nested procedure calls is
performed. At some stage the stack-space has to run out and the current procedure and its parameters
(including the current continuation) are stored somewhere in the runtime system. Now a minor garbage
collection occurs and rescues all live data from the stack (the first heap generation) and moves it into the the
second heap generation. Then the stack is cleared (using a 1ongjmp) and execution can continue from the
saved state. With this method arbitrary recursion (in tail- or non-tail position) can happen, provided the
application doesn't run out of heap-space. (The difference between a tail- and a non-tail call is that the tail-call
has no live data after it invokes its continuation - and so the amount of heap-space needed stays constant)

39.7.2 Why do finalizers not seem to work in simple cases in the
interpeter?

Consider the following interaction in CSI:

#;1> (define x '(1 2 3))
#;2> (define (yammer x) (print x " is dead"))
#;3> (set-finalizer! x yammer)

39.6.3 Which non-standard procedures are treated specially when theextended-bindings or usuaRR8egratior

CHICKEN User's Manual - The User's Manual

(1 2 3)

#;4> (gc #t)
157812

#;5> (define x #f)
#;6> (gc #t)
157812

#;7>

While you might expect objects to be reclaimed and "(1 2 3) is dead" printed, it won't happen: the literal list

gets held in the interpreter history, because it is the result value of the set-finalizer! call. Running this in a
normal program will work fine.

When testing finalizers from the interpreter, you might want to define a trivial macro such as
(define-macro (v x) ° (begin (print ,x) (void)))

and wrap calls to set—-finalizer! init.

39.8 Interpreter

39.8.1 Does CSI support history and autocompletion?

CSI doesn't support it natively but it can be activated with the
http://www .call-with-current-continuation.org/eggs/readline.html egg. After installing the egg, add the
following to your ~/ . csirc or equivalent file:

(require—-extension readline)
(current—-input-port (make-gnu-readline-port))
(gnu-history-install-file-manager (string-append (or (getenv))))

Users of *nix-like systems (including Cygwin), may also want to check out rlwrap. This program lets you
"wrap" another process (e.g. rlwrap csi) with the readline library, giving you history, autocompletion,

and the ability to set the keystroke set. Vi fans can get vi keystrokes by adding "set editing-mode vi" to their
.inputrc file.

39.8.2 Does code loaded with 1oad run compiled or interpreted?

If you compile a file with a call to 10ad, the code will be loaded at runtime and, if the file loaded is a Scheme
source code file (instead of a shared object), it will be interpreted (even if the caller program is compiled).

39.9 Extensions

39.9.1 How can | install Chicken eggs to a non-default location?

You can just set the CHICKEN_REPOSITORY environment variable. It should contain the path where you
want eggs to be installed:

$ export CHICKEN_REPOSITORY=~/chicken/
$ chicken-setup extensionname

39.7.2 Why do finalizers not seem to work in simple cases in theinterpeter? 224

http://www.call-with-current-continuation.org/eggs/readline.html
http://utopia.knoware.nl/~hlub/rlwrap/

CHICKEN User's Manual - The User's Manual

In order to make programs (including csi) see these eggs, you should set this variable when you run them.
Alternatively, you can call the repository-path Scheme procedure before loading the eggs, as in:

(repository-path)
(use format-modular)

Note, however, that using repository-path as above hard-codes the location of your eggs in your source

files. While this might not be an issue in your case, it might be safe to keep this configuration outside of the
source code (that is, specifying it as an environment variable) to make it easier to maintain.

39.9.2 Can | install chicken eggs as a non-root user?

Yes, just install them in a directory you can write.

Previous: Bugs and limitations

Next: Acknowledgements

39.9.1 How can | install Chicken eggs to a non-default location? 225

http://galinha.ucpel.tche.br/FAQ#Extensions#How can I install Chicken eggs to a non-default location?

40 Acknowledgements

Many thanks to Nico Amtsberg, William Annis, Marc Baily, Peter Barabas, Jonah Beckford, Arto Bendiken,
Peter Bex, Jean-Francois Bignolles, Alaric Blagrave-Snellpym, Dave Bodenstab, Fabian Boehlke, T. Kurt
Bond, Ashley Bone, Dominique Boucher, Terence Brannon, Roy Bryant, Adam Buchbinder, Hans Bulfone,
Category 5, Taylor Campbell, Naruto Canada, Esteban U. Caamano Castro, Franklin Chen, Thomas Chust,
Gian Paolo Ciceri, John Cowan, Grzegorz Chrupała, James Crippen, Tollef Fog Heen, Alejandro
Forero Cuervo, Linh Dang, Brian Denheyer, dgym, Don, Chris Double, Jarod Eells, Petter Egesund, Steve
Elkins, Daniel B. Faken, Will Farr, Graham Fawcett, Marc Feeley, Fizzie, Kimura Fuyuki, Tony
Garnock-Jones, Martin Gasbichler, Joey Gibson, Stephen C. Gilardi, Joshua Griffith, Johannes Groedem,
Damian Gryski, Mario Domenech Goulart, Andreas Gustafsson, Sven Hartrumpf, Jun-ichiro itojun Hagino,
Ahdi Hargo, Matthias Heiler, Karl M. Hegbloom, William P. Heinemann, Bill Hoffman, Bruce Hoult, Hans
Huebner, Markus Huelsmann, Goetz Isenmann, Paulo Jabardo, David Janssens, Christian Jaeger, Dale Jordan,
Valentin Kamyshenko, Daishi Kato, Peter Keller, Brad Kind, Ron Kneusel, Matthias Koeppe, Krysztof
Kowałczyk, Andre Kuehne, Todd R. Kueny Sr, Goran Krampe, David Krentzlin, Ben Kurtz, Micky
Latowicki, John Lenz, Kirill Lisovsky, Juergen Lorenz, Kon Lovett, Dennis Marti, Charles Martin, Bob
Mclsaac, Alain Mellan, Eric Merrit, Perry Metzger, Scott G. Miller, Mikael, Bruce Mitchener, Chris Moline,
Eric E. Moore, Julian Morrison, Dan Muresan, Lars Nilsson, lan Oversby, o.t., Gene Pavlovsky, Levi Pearson,
Nicolas Pelletier, Carlos Pita, Robin Lee Powell, Pupeno, Davide Puricelli, Doug Quale, Eric Raible, Ivan
Raikov, Joel Reymont, Eric Rochester, Andreas Rottman, David Rush, Lars Rustemeier, Daniel Sadilek,
Oskar Schirmer, Burton Samograd, Reed Sheridan, Ronald Schroeder, Spencer Schumann, Alex Shinn, Ivan
Shmakov, Shmul, Tony Sidaway, Jeffrey B. Siegal, Andrey Sidorenko, Michele Simionato, Volker Stolz, Jon
Strait, Dorai Sitaram, Robert Skeels, Jason Songhurst, Clifford Stein, Sunnan, Zbigniew Szadkowski, Rick
Taube, Mike Thomas, Minh Thu, Christian Tismer, Andre van Tonder, John Tobey, Henrik Tramberend,
Vladimir Tsichevsky, Neil van Dyke, Sander Vesik, Jaques Vidrine, Panagiotis Vossos, Shawn Wagner, Peter
Wang, Ed Watkeys, Brad Watson, Thomas Weidner, Goeran Weinholt, Matthew Welland, Joerg
Wittenberger, Peter Wright, Mark Wutka, Richard Zidlicky and Houman Zolfaghari for bug-fixes, tips and
suggestions.

CHICKEN uses the PCRE regular expression package (http://www.pcre.org), which is written by Philip
Hazel.

Special thanks to Brandon van Every for contributing the (now defunct) CMake support and for helping with
Windows build issues.

Also special thanks to Benedikt Rosenau for his constant encouragement.
Thanks to Dunja Winkelmann for putting up with all of this.
CHICKEN contains code from several people:

Eli Barzilay
some performance tweaks used in TinyCLOS.
Mikael Djurfeldt
topological sort used by compiler.
Marc Feeley
pretty-printer.
Aubrey Jaffer
implementation of dynamic-wind.
Richard O'Keefe
sorting routines.
Olin Shivers
implementation of let-optionals[*] and reference implementations of SRFI-1, SRFI-13 and
SRFI-14.

40 Acknowledgements 226

http://www.pcre.org
http://www.cmake.org

CHICKEN User's Manual - The User's Manual

Andrew Wilcox
queues.
Andrew Wright
pattern matcher.
Alex Shinn
scheme-complete.el emacs tab-completion

Previous: FAQ

Next: Bibliography

40 Acknowledgements 227

http://chicken.wiki.br/Alex Shinn

41 Bibliography

Henry Baker: CONS Should Not CONS Its Arguments, Part Il: Cheney on the M.T.A.
http://home.pipeline.com/~hbaker1/CheneyMTA . .html

Revised™5 Report on the Algorithmic Language Scheme
http://www.schemers.org/Documents/Standards/R5RS

Previous: Acknowledgements

41 Bibliography 228

http://home.pipeline.com/~hbaker1/CheneyMTA.html
http://www.schemers.org/Documents/Standards/R5RS

	Chicken User's Manual
	1 The User's Manual
	2 Overview
	2.1 Features

	3 Basic mode of operation
	4 Using the compiler
	4.1 Compiler command line format
	4.2 Runtime options
	4.3 Examples
	4.3.1 A simple example (with one source file)
	4.3.2 An example with multiple files

	4.4 Extending the compiler
	4.5 Distributing compiled C files

	5 Using the interpreter
	5.1 Interpreter command line format
	5.2 Writing Scheme scripts
	5.3 Toplevel commands
	5.4 toplevel-command
	5.5 History access
	5.6 set-describer!
	5.7 Auto-completion and edition
	5.8 Accessing documentation

	6 Supported language
	7 Deviations from the standard
	8 Extensions to the standard
	9 Non-standard read syntax
	9.1 Multiline Block Comment
	9.2 Expression Comment
	9.3 External Representation
	9.4 Syntax Expression
	9.5 Location Expression
	9.6 Keyword
	9.7 Multiline String Constant
	9.8 Multiline String Constant with Embedded Expressions
	9.9 Foreign Declare
	9.10 Sharp Prefixed Symbol
	9.11 Bang
	9.11.1 Line Comment
	9.11.2 Eof Object
	9.11.3 DSSSL Formal Parameter List Annotation
	9.11.4 Read Mark Invocation

	9.12 Case Sensitive Expression
	9.13 Case Insensitive Expression
	9.14 Conditional Expansion

	10 Non-standard macros and special forms
	10.1 Making extra libraries and extensions available
	10.1.1 require-extension
	10.1.2 define-extension

	10.2 Binding forms for optional arguments
	10.2.1 optional
	10.2.2 case-lambda
	10.2.3 let-optionals
	10.2.4 let-optionals*

	10.3 Other binding forms
	10.3.1 and-let*
	10.3.2 rec
	10.3.3 cut
	10.3.4 define-values
	10.3.5 fluid-let
	10.3.6 let-values
	10.3.7 let*-values
	10.3.8 letrec-values
	10.3.9 parameterize
	10.3.10 receive
	10.3.11 set!-values

	10.4 Substitution forms and macros
	10.4.1 define-constant
	10.4.2 define-inline
	10.4.3 define-macro
	10.4.4 define-for-syntax

	10.5 Conditional forms
	10.5.1 select
	10.5.2 unless
	10.5.3 when

	10.6 Record structures
	10.6.1 define-record
	10.6.2 define-record-printer
	10.6.3 define-record-type

	10.7 Other forms
	10.7.1 assert
	10.7.2 cond-expand
	10.7.3 ensure
	10.7.4 eval-when
	10.7.5 include
	10.7.6 nth-value
	10.7.7 time

	11 Pattern matching
	11.1 Pattern Matching Expressions
	11.2 Patterns
	11.3 Match Failure
	11.4 Record Structures Pattern
	11.5 Code Generation

	12 Declarations
	12.1 declare
	12.2 always-bound
	12.3 block
	12.4 block-global
	12.5 hide
	12.6 bound-to-procedure
	12.7 c-options
	12.8 check-c-syntax
	12.9 constant
	12.10 export
	12.11 emit-exports
	12.12 emit-external-prototypes-first
	12.13 disable-interrupts
	12.14 disable-warning
	12.15 import
	12.16 inline
	12.17 inline-limit
	12.18 interrupts-enabled
	12.19 keep-shadowed-macros
	12.20 lambda-lift
	12.21 link-options
	12.22 no-argc-checks
	12.23 no-bound-checks
	12.24 no-procedure-checks
	12.25 post-process
	12.26 number-type
	12.27 fixnum-arithmetic
	12.28 run-time-macros
	12.29 standard-bindings
	12.30 extended-bindings
	12.31 usual-integrations
	12.32 unit
	12.33 unsafe
	12.34 unused
	12.35 uses

	13 Parameters
	13.1 make-parameter
	13.2 case-sensitive
	13.3 dynamic-load-libraries
	13.4 command-line-arguments
	13.5 current-read-table
	13.6 exit-handler
	13.7 eval-handler
	13.8 force-finalizers
	13.9 implicit-exit-handler
	13.10 keyword-style
	13.11 load-verbose
	13.12 program-name
	13.13 repl-prompt
	13.14 reset-handler

	14 Unit library
	14.1 Arithmetic
	14.1.1 add1/sub1
	14.1.2 Binary integer operations
	14.1.3 bit-set?
	14.1.4 fixnum?
	14.1.5 Arithmetic fixnum operations
	14.1.6 Arithmetic floating-point operations
	14.1.7 signum
	14.1.8 finite?
	14.1.9 flonum-print-precision

	14.2 File Input/Output
	14.2.1 current-output-port
	14.2.2 current-error-port
	14.2.3 flush-output
	14.2.4 port-name
	14.2.5 port-position
	14.2.6 set-port-name!

	14.3 Files
	14.3.1 delete-file
	14.3.2 file-exists?
	14.3.3 rename-file

	14.4 String ports
	14.4.1 get-output-string
	14.4.2 open-input-string
	14.4.3 open-output-string

	14.5 Feature identifiers
	14.5.1 features
	14.5.2 feature?
	14.5.3 register-feature!
	14.5.4 unregister-feature!

	14.6 Keywords
	14.6.1 get-keyword
	14.6.2 keyword?
	14.6.3 keyword→string
	14.6.4 string→keyword

	14.7 Exceptions
	14.7.1 condition-case
	14.7.2 breakpoint

	14.8 Environment information and system interface
	14.8.1 argv
	14.8.2 exit
	14.8.3 build-platform
	14.8.4 chicken-version
	14.8.5 errno
	14.8.6 getenv
	14.8.7 machine-byte-order
	14.8.8 machine-type
	14.8.9 on-exit
	14.8.10 software-type
	14.8.11 software-version
	14.8.12 c-runtime
	14.8.13 system

	14.9 Execution time
	14.9.1 cpu-time
	14.9.2 current-milliseconds
	14.9.3 current-seconds
	14.9.4 current-gc-milliseconds

	14.10 Interrupts and error-handling
	14.10.1 enable-warnings
	14.10.2 error
	14.10.3 get-call-chain
	14.10.4 print-call-chain
	14.10.5 print-error-message
	14.10.6 procedure-information
	14.10.7 reset
	14.10.8 warning
	14.10.9 singlestep

	14.11 Garbage collection
	14.11.1 gc
	14.11.2 memory-statistics
	14.11.3 set-finalizer!
	14.11.4 set-gc-report!

	14.12 Other control structures
	14.12.1 promise?

	14.13 String utilities
	14.13.1 reverse-list→string

	14.14 Generating uninterned symbols
	14.14.1 gensym
	14.14.2 string→uninterned-symbol

	14.15 Standard Input/Output
	14.15.1 port?
	14.15.2 print
	14.15.3 print*

	14.16 User-defined named characters
	14.16.1 char-name

	14.17 Blobs
	14.17.1 make-blob
	14.17.2 blob?
	14.17.3 blob-size
	14.17.4 blob→string
	14.17.5 string→blob
	14.17.6 blob=?

	14.18 Vectors
	14.18.1 vector-copy!
	14.18.2 vector-resize

	14.19 The unspecified value
	14.19.1 void

	14.20 Continuations
	14.20.1 call/cc
	14.20.2 continuation-capture
	14.20.3 continuation?
	14.20.4 continuation-graft
	14.20.5 continuation-return

	14.21 Setters
	14.21.1 setter
	14.21.2 getter-with-setter

	14.22 Reader extensions
	14.22.1 define-reader-ctor
	14.22.2 set-read-syntax!
	14.22.3 set-sharp-read-syntax!
	14.22.4 set-parameterized-read-syntax!
	14.22.5 copy-read-table

	14.23 Property lists
	14.23.1 get
	14.23.2 put!
	14.23.3 remprop!
	14.23.4 symbol-plist
	14.23.5 get-properties

	15 Unit eval
	15.1 Loading code
	15.1.1 load
	15.1.2 load-relative
	15.1.3 load-noisily
	15.1.4 load-library
	15.1.5 set-dynamic-load-mode!

	15.2 Read-eval-print loop
	15.2.1 repl

	15.3 Macros
	15.3.1 get-line-number
	15.3.2 macro?
	15.3.3 macroexpand
	15.3.4 macroexpand-1
	15.3.5 undefine-macro!
	15.3.6 syntax-error

	15.4 Loading extension libraries
	15.4.1 repository-path
	15.4.2 extension-information
	15.4.3 provide
	15.4.4 provided?
	15.4.5 require
	15.4.6 set-extension-specifier!

	15.5 System information
	15.5.1 chicken-home

	15.6 Eval
	15.6.1 eval

	16 Unit extras
	16.1 Lists
	16.1.1 alist-ref
	16.1.2 alist-update!
	16.1.3 atom?
	16.1.4 rassoc
	16.1.5 butlast
	16.1.6 chop
	16.1.7 compress
	16.1.8 flatten
	16.1.9 intersperse
	16.1.10 join
	16.1.11 shuffle
	16.1.12 tail?

	16.2 String-port extensions
	16.2.1 call-with-input-string
	16.2.2 call-with-output-string
	16.2.3 with-input-from-string
	16.2.4 with-output-to-string

	16.3 Formatted output
	16.3.1 printf
	16.3.2 fprintf
	16.3.3 sprintf
	16.3.4 format

	16.4 Hash tables
	16.4.1 make-hash-table
	16.4.2 hash-table?
	16.4.3 hash-table-size
	16.4.4 hash-table-equivalence-function
	16.4.5 hash-table-hash-function
	16.4.6 hash-table-min-load
	16.4.7 hash-table-max-load
	16.4.8 hash-table-weak-keys
	16.4.9 hash-table-weak-values
	16.4.10 hash-table-has-initial?
	16.4.11 hash-table-initial
	16.4.12 hash-table-keys
	16.4.13 hash-table-values
	16.4.14 hash-table→alist
	16.4.15 alist→hash-table
	16.4.16 hash-table-ref
	16.4.17 hash-table-ref/default
	16.4.18 hash-table-exists?
	16.4.19 hash-table-set!
	16.4.20 hash-table-update!
	16.4.21 hash-table-update!/default
	16.4.22 hash-table-copy
	16.4.23 hash-table-delete!
	16.4.24 hash-table-remove!
	16.4.25 hash-table-merge
	16.4.26 hash-table-merge!
	16.4.27 hash-table-map
	16.4.28 hash-table-fold
	16.4.29 hash-table-for-each
	16.4.30 hash-table-walk

	16.5 Hash Functions
	16.5.1 number-hash
	16.5.2 object-uid-hash
	16.5.3 symbol-hash
	16.5.4 keyword-hash
	16.5.5 string-hash
	16.5.6 string-ci-hash
	16.5.7 eq?-hash
	16.5.8 eqv?-hash
	16.5.9 equal?-hash
	16.5.10 hash
	16.5.11 hash-by-identity

	16.6 Queues
	16.6.1 list→queue
	16.6.2 make-queue
	16.6.3 queue?
	16.6.4 queue→list
	16.6.5 queue-add!
	16.6.6 queue-empty?
	16.6.7 queue-first
	16.6.8 queue-last
	16.6.9 queue-remove!
	16.6.10 queue-push-back!
	16.6.11 queue-push-back-list!

	16.7 Sorting
	16.7.1 merge
	16.7.2 sort
	16.7.3 sorted?

	16.8 Random numbers
	16.8.1 random-seed
	16.8.2 random
	16.8.3 randomize

	16.9 Input/Output extensions
	16.9.1 make-input-port
	16.9.2 make-output-port
	16.9.3 pretty-print
	16.9.4 pretty-print-width
	16.9.5 read-byte
	16.9.6 write-byte
	16.9.7 read-file
	16.9.8 read-line
	16.9.9 write-line
	16.9.10 read-lines
	16.9.11 read-string
	16.9.12 read-string!
	16.9.13 write-string
	16.9.14 read-token
	16.9.15 with-error-output-to-port
	16.9.16 with-input-from-port
	16.9.17 with-output-to-port

	16.10 Strings
	16.10.1 conc
	16.10.2 →string
	16.10.3 string-chop
	16.10.4 string-chomp
	16.10.5 string-compare3
	16.10.6 string-intersperse
	16.10.7 string-split
	16.10.8 string-translate
	16.10.9 string-translate*
	16.10.10 substring=?
	16.10.11 substring-index

	16.11 Combinators
	16.11.1 any?
	16.11.2 none?
	16.11.3 always?
	16.11.4 never?
	16.11.5 constantly
	16.11.6 complement
	16.11.7 compose
	16.11.8 conjoin
	16.11.9 disjoin
	16.11.10 each
	16.11.11 flip
	16.11.12 identity
	16.11.13 project
	16.11.14 list-of
	16.11.15 noop
	16.11.16 o
	16.11.17 left-section
	16.11.18 right-section

	16.12 Binary searching
	16.12.1 binary-search

	17 Unit srfi-1
	18 Unit srfi-4
	18.1 make-XXXvector
	18.2 u8vector→blob
	18.3 s8vector→blob
	18.4 u16vector→blob
	18.5 s16vector→blob
	18.6 u32vector→blob
	18.7 s32vector→blob
	18.8 f32vector→blob
	18.9 f64vector→blob
	18.10 u8vector→blob/shared
	18.11 s8vector→blob/shared
	18.12 u16vector→blob/shared
	18.13 s16vector→blob/shared
	18.14 u32vector→blob/shared
	18.15 s32vector→blob/shared
	18.16 f32vector→blob/shared
	18.17 f64vector→blob/shared
	18.18 blob→u8vector
	18.19 blob→s8vector
	18.20 blob→u16vector
	18.21 blob→s16vector
	18.22 blob→u32vector
	18.23 blob→s32vector
	18.24 blob→f32vector
	18.25 blob→f64vector
	18.26 blob→u8vector/shared
	18.27 blob→s8vector/shared
	18.28 blob→u16vector/shared
	18.29 blob→s16vector/shared
	18.30 blob→u32vector/shared
	18.31 blob→s32vector/shared
	18.32 blob→f32vector/shared
	18.33 blob→f64vector/shared
	18.34 subu8vector
	18.35 subu16vector
	18.36 subu32vector
	18.37 subs8vector
	18.38 subs16vector
	18.39 subs32vector
	18.40 subf32vector
	18.41 subf64vector
	18.42 read-u8vector
	18.43 read-u8vector!
	18.44 write-u8vector

	19 Unit srfi-13
	20 Unit srfi-14
	21 Unit match
	22 Unit regex
	22.1 grep
	22.2 glob→regexp
	22.3 glob?
	22.4 regexp
	22.5 regexp*
	22.6 regexp?
	22.7 regexp-optimize
	22.8 string-match
	22.9 string-match-positions
	22.10 string-search
	22.11 string-search-positions
	22.12 string-split-fields
	22.13 string-substitute
	22.14 string-substitute*
	22.15 regexp-escape
	22.16 make-anchored-pattern

	23 Unit srfi-18
	23.1 thread-signal!
	23.2 thread-quantum
	23.3 thread-quantum-set!
	23.4 thread-suspend!
	23.5 thread-resume!
	23.6 thread-wait-for-i/o!
	23.7 time→milliseconds

	24 Unit posix
	24.1 Constants
	24.1.1 File-control Commands
	24.1.2 Standard I/O file-descriptors
	24.1.3 Open flags
	24.1.4 Permission bits

	24.2 Directories
	24.2.1 change-directory
	24.2.2 current-directory
	24.2.3 create-directory
	24.2.4 delete-directory
	24.2.5 directory
	24.2.6 directory?
	24.2.7 glob
	24.2.8 canonical-path
	24.2.9 set-root-directory!

	24.3 Pipes
	24.3.1 call-with-input-pipe
	24.3.2 call-with-output-pipe
	24.3.3 close-input-pipe
	24.3.4 close-output-pipe
	24.3.5 create-pipe
	24.3.6 open-input-pipe
	24.3.7 open-output-pipe
	24.3.8 pipe/buf
	24.3.9 with-input-from-pipe
	24.3.10 with-output-to-pipe

	24.4 Fifos
	24.4.1 create-fifo
	24.4.2 fifo?

	24.5 File descriptors and low-level I/O
	24.5.1 duplicate-fileno
	24.5.2 file-close
	24.5.3 file-open
	24.5.4 file-mkstemp
	24.5.5 file-read
	24.5.6 file-select
	24.5.7 file-write
	24.5.8 file-control
	24.5.9 open-input-file*
	24.5.10 open-output-file*
	24.5.11 port→fileno

	24.6 Retrieving file attributes
	24.6.1 file-access-time
	24.6.2 file-change-time
	24.6.3 file-modification-time
	24.6.4 file-stat
	24.6.5 file-position
	24.6.6 file-size
	24.6.7 regular-file?
	24.6.8 file-owner
	24.6.9 file-permissions
	24.6.10 file-read-access?
	24.6.11 file-write-access?
	24.6.12 file-execute-access?
	24.6.13 stat-regular?
	24.6.14 stat-directory?
	24.6.15 stat-char-device?
	24.6.16 stat-block-device?
	24.6.17 stat-fifo?
	24.6.18 stat-symlink?
	24.6.19 stat-socket?

	24.7 Changing file attributes
	24.7.1 file-truncate
	24.7.2 set-file-position!
	24.7.3 change-file-mode
	24.7.4 change-file-owner

	24.8 Processes
	24.8.1 current-process-id
	24.8.2 parent-process-id
	24.8.3 process-group-id
	24.8.4 process-execute
	24.8.5 process-fork
	24.8.6 process-run
	24.8.7 process-signal
	24.8.8 process-wait
	24.8.9 process
	24.8.10 process*
	24.8.11 sleep
	24.8.12 create-session

	24.9 Hard and symbolic links
	24.9.1 symbolic-link?
	24.9.2 create-symbolic-link
	24.9.3 read-symbolic-link
	24.9.4 file-link

	24.10 Retrieving user & group information
	24.10.1 current-user-id
	24.10.2 current-effective-user-id
	24.10.3 user-information
	24.10.4 current-group-id
	24.10.5 current-effective-group-id
	24.10.6 group-information
	24.10.7 get-groups

	24.11 Changing user & group information
	24.11.1 set-groups!
	24.11.2 initialize-groups
	24.11.3 set-process-group-id!

	24.12 Record locking
	24.12.1 file-lock
	24.12.2 file-lock/blocking
	24.12.3 file-test-lock
	24.12.4 file-unlock

	24.13 Signal handling
	24.13.1 set-alarm!
	24.13.2 set-signal-handler!
	24.13.3 signal-handler
	24.13.4 set-signal-mask!
	24.13.5 signal-mask
	24.13.6 signal-masked?
	24.13.7 signal-mask!
	24.13.8 signal-unmask!
	24.13.9 signal/term
	24.13.10 signal/kill
	24.13.11 signal/int
	24.13.12 signal/hup
	24.13.13 signal/fpe
	24.13.14 signal/ill
	24.13.15 signal/segv
	24.13.16 signal/abrt
	24.13.17 signal/trap
	24.13.18 signal/quit
	24.13.19 signal/alrm
	24.13.20 signal/vtalrm
	24.13.21 signal/prof
	24.13.22 signal/io
	24.13.23 signal/urg
	24.13.24 signal/chld
	24.13.25 signal/cont
	24.13.26 signal/stop
	24.13.27 signal/tstp
	24.13.28 signal/pipe
	24.13.29 signal/xcpu
	24.13.30 signal/xfsz
	24.13.31 signal/usr1
	24.13.32 signal/usr2
	24.13.33 signal/winch

	24.14 Environment access
	24.14.1 current-environment
	24.14.2 setenv
	24.14.3 unsetenv

	24.15 Memory mapped I/O
	24.15.1 memory-mapped-file?
	24.15.2 map-file-to-memory
	24.15.3 memory-mapped-file-pointer
	24.15.4 unmap-file-from-memory

	24.16 Date and time routines
	24.16.1 seconds→local-time
	24.16.2 local-time→seconds
	24.16.3 local-timezone-abbreviation
	24.16.4 seconds→string
	24.16.5 seconds→utc-time
	24.16.6 utc-time→seconds
	24.16.7 time→string
	24.16.8 string→time

	24.17 Raw exit
	24.17.1 _exit

	24.18 ERRNO values
	24.18.1 errno/perm
	24.18.2 errno/noent
	24.18.3 errno/srch
	24.18.4 errno/intr
	24.18.5 errno/io
	24.18.6 errno/noexec
	24.18.7 errno/badf
	24.18.8 errno/child
	24.18.9 errno/nomem
	24.18.10 errno/acces
	24.18.11 errno/fault
	24.18.12 errno/busy
	24.18.13 errno/notdir
	24.18.14 errno/isdir
	24.18.15 errno/inval
	24.18.16 errno/mfile
	24.18.17 errno/nospc
	24.18.18 errno/spipe
	24.18.19 errno/pipe
	24.18.20 errno/again
	24.18.21 errno/rofs
	24.18.22 errno/exist
	24.18.23 errno/wouldblock

	24.19 Finding files
	24.19.1 find-files

	24.20 Getting the hostname and system information
	24.20.1 get-host-name
	24.20.2 system-information

	24.21 Setting the file buffering mode
	24.21.1 set-buffering-mode!

	24.22 Terminal ports
	24.22.1 terminal-name
	24.22.2 terminal-port?

	24.23 How Scheme procedures relate to UNIX C functions
	24.24 Windows specific notes
	24.24.1 Procedure Changes
	24.24.2 Unsupported Definitions
	24.24.3 Additional Definitions
	24.24.4 process-spawn

	25 Unit utils
	25.1 Environment Query
	25.1.1 apropos
	25.1.2 apropos-list

	25.2 Pathname operations
	25.2.1 absolute-pathname?
	25.2.2 decompose-pathname
	25.2.3 make-pathname
	25.2.4 make-absolute-pathname
	25.2.5 pathname-directory
	25.2.6 pathname-file
	25.2.7 pathname-extension
	25.2.8 pathname-replace-directory
	25.2.9 pathname-replace-file
	25.2.10 pathname-replace-extension
	25.2.11 pathname-strip-directory
	25.2.12 pathname-strip-extension
	25.2.13 directory-null?

	25.3 Temporary files
	25.3.1 create-temporary-file

	25.4 Deleting a file without signalling an error
	25.4.1 delete-file*

	25.5 Iterating over input lines and files
	25.5.1 for-each-line
	25.5.2 for-each-argv-line
	25.5.3 port-for-each
	25.5.4 port-map
	25.5.5 port-fold

	25.6 Executing shell commands with formatstring and error checking
	25.6.1 system*

	25.7 Reading a file's contents
	25.7.1 read-all

	25.8 Funky ports
	25.8.1 make-broadcast-port
	25.8.2 make-concatenated-port

	25.9 Miscellaneous handy things
	25.9.1 shift! DEPRECATED
	25.9.2 unshift! DEPRECATED

	26 Unit tcp
	26.1 tcp-listen
	26.2 tcp-listener?
	26.3 tcp-close
	26.4 tcp-accept
	26.5 tcp-accept-ready?
	26.6 tcp-listener-port
	26.7 tcp-listener-fileno
	26.8 tcp-connect
	26.9 tcp-addresses
	26.10 tcp-port-numbers
	26.11 tcp-abandon-port
	26.12 tcp-buffer-size
	26.13 tcp-read-timeout
	26.14 tcp-write-timeout
	26.15 tcp-connect-timeout
	26.16 tcp-accept-timeout
	26.17 Example

	27 Unit lolevel
	27.1 Foreign pointers
	27.1.1 address→pointer
	27.1.2 allocate
	27.1.3 free
	27.1.4 null-pointer
	27.1.5 null-pointer?
	27.1.6 object→pointer
	27.1.7 pointer?
	27.1.8 pointer=?
	27.1.9 pointer→address
	27.1.10 pointer→object
	27.1.11 pointer-offset
	27.1.12 pointer-u8-ref
	27.1.13 pointer-s8-ref
	27.1.14 pointer-u16-ref
	27.1.15 pointer-s16-ref
	27.1.16 pointer-u32-ref
	27.1.17 pointer-s32-ref
	27.1.18 pointer-f32-ref
	27.1.19 pointer-f64-ref
	27.1.20 pointer-u8-set!
	27.1.21 pointer-s8-set!
	27.1.22 pointer-u16-set!
	27.1.23 pointer-s16-set!
	27.1.24 pointer-u32-set!
	27.1.25 pointer-s32-set!
	27.1.26 pointer-f32-set!
	27.1.27 pointer-f64-set!
	27.1.28 align-to-word

	27.2 Tagged pointers
	27.2.1 tag-pointer
	27.2.2 tagged-pointer?
	27.2.3 pointer-tag

	27.3 Extending procedures with data
	27.3.1 extend-procedure
	27.3.2 extended-procedure?
	27.3.3 procedure-data
	27.3.4 set-procedure-data!

	27.4 Data in unmanaged memory
	27.4.1 object-evict
	27.4.2 object-evict-to-location
	27.4.3 object-evicted?
	27.4.4 object-size
	27.4.5 object-release
	27.4.6 object-unevict

	27.5 Locatives
	27.5.1 make-locative
	27.5.2 make-weak-locative
	27.5.3 locative?
	27.5.4 locative-ref
	27.5.5 locative-set!
	27.5.6 locative→object

	27.6 Accessing toplevel variables
	27.6.1 global-bound?
	27.6.2 global-ref
	27.6.3 global-set!

	27.7 Low-level data access
	27.7.1 block-ref
	27.7.2 block-set!
	27.7.3 object-copy
	27.7.4 make-record-instance
	27.7.5 move-memory!
	27.7.6 number-of-bytes
	27.7.7 number-of-slots
	27.7.8 record-instance?
	27.7.9 record→vector

	27.8 Procedure-call- and variable reference hooks
	27.8.1 set-invalid-procedure-call-handler!
	27.8.2 unbound-variable-value

	27.9 Magic
	27.9.1 object-become!
	27.9.2 mutate-procedure

	28 Interface to external functions and variables
	29 Accessing external objects
	29.1 foreign-code
	29.2 foreign-value
	29.3 foreign-declare
	29.4 define-foreign-type
	29.5 define-foreign-variable
	29.6 define-foreign-record
	29.6.1 TYPENAME-SLOTNAME
	29.6.2 TYPENAME-SLOTNAME-set!
	29.6.3 constructor
	29.6.4 destructor
	29.6.5 rename

	29.7 define-foreign-enum
	29.8 foreign-lambda
	29.9 foreign-lambda*
	29.10 foreign-safe-lambda
	29.11 foreign-safe-lambda*
	29.12 foreign-primitive

	30 Foreign type specifiers
	30.1 scheme-object
	30.2 bool
	30.3 byte unsigned-byte
	30.4 char unsigned-char
	30.5 short unsigned-short
	30.6 int unsigned-int int32 unsigned-int32
	30.7 integer unsigned-integer integer32 unsigned-integer32 integer64
	30.8 long unsigned-long
	30.9 float double
	30.10 number
	30.11 symbol
	30.12 scheme-pointer
	30.13 nonnull-scheme-pointer
	30.14 c-pointer
	30.15 nonnull-c-pointer
	30.16 blob
	30.17 nonnull-blob
	30.18 u8vector u16vector u32vector s8vector s16vector s32vector f32vector f64vector
	30.19 nonnull-u8vector nonnull-u16vector nonnull-u32vector nonnull-s8vector nonnull-s16vector nonnull-s32vector nonnull-f32vector nonnull-f64vector
	30.20 c-string
	30.21 nonnull-c-string
	30.22 [nonnull-] c-string*
	30.23 [nonnull-] unsigned-c-string[*]
	30.24 c-string-list
	30.25 c-string-list*
	30.26 void
	30.27 (const TYPE)
	30.28 (enum NAME)
	30.29 (c-pointer TYPE)
	30.30 (nonnull-c-pointer TYPE)
	30.31 (ref TYPE)
	30.32 (struct NAME)
	30.33 (template TYPE ARGTYPE ...)
	30.34 (union NAME)
	30.35 (instance CNAME SCHEMECLASS)
	30.36 (instance-ref CNAME SCHEMECLASS)
	30.37 (function RESULTTYPE (ARGUMENTTYPE1 ... [...]) [CALLCONV])
	30.38 Mappings

	31 Embedding
	31.1 CHICKEN_parse_command_line
	31.2 CHICKEN_initialize
	31.3 CHICKEN_run
	31.4 return-to-host
	31.5 CHICKEN_eval
	31.6 CHICKEN_eval_string
	31.7 CHICKEN_eval_to_string
	31.8 CHICKEN_eval_string_to_string
	31.9 CHICKEN_apply
	31.10 CHICKEN_apply_to_string
	31.11 CHICKEN_read
	31.12 CHICKEN_load
	31.13 CHICKEN_get_error_message
	31.14 CHICKEN_yield
	31.15 CHICKEN_continue
	31.16 CHICKEN_new_gc_root
	31.17 CHICKEN_delete_gc_root
	31.18 CHICKEN_gc_root_ref
	31.19 CHICKEN_gc_root_set
	31.20 CHICKEN_global_lookup
	31.21 CHICKEN_global_ref
	31.22 CHICKEN_global_set

	32 Callbacks
	32.1 define-external
	32.2 C_callback
	32.3 C_callback_adjust_stack

	33 Locations
	33.1 define-location
	33.2 let-location
	33.3 location

	34 Other support procedures
	34.1 argc+argv

	35 C interface
	35.1 C_save
	35.2 C_restore
	35.3 C_fix
	35.4 C_make_character
	35.5 C_SCHEME_END_OF_LIST
	35.6 C_word C_SCHEME_END_OF_FILE
	35.7 C_word C_SCHEME_FALSE
	35.8 C_word C_SCHEME_TRUE
	35.9 C_string
	35.10 C_string2
	35.11 C_intern2
	35.12 C_intern3
	35.13 C_pair
	35.14 C_flonum
	35.15 C_int_to_num
	35.16 C_mpointer
	35.17 C_vector
	35.18 C_list
	35.19 C_alloc
	35.20 C_SIZEOF_LIST
	35.21 C_SIZEOF_STRING
	35.22 C_SIZEOF_VECTOR
	35.23 C_SIZEOF_INTERNED_SYMBOL
	35.24 C_SIZEOF_PAIR
	35.25 C_SIZEOF_FLONUM
	35.26 C_SIZEOF_POINTER
	35.27 C_SIZEOF_LOCATIVE
	35.28 C_SIZEOF_TAGGED_POINTER
	35.29 C_character_code
	35.30 C_unfix
	35.31 C_flonum_magnitude
	35.32 C_c_string
	35.33 C_num_to_int
	35.34 C_pointer_address
	35.35 C_header_size
	35.36 C_header_bits
	35.37 C_block_item
	35.38 C_u_i_car
	35.39 C_u_i_cdr
	35.40 C_data_pointer
	35.41 C_make_header
	35.42 C_mutate
	35.43 C_symbol_value
	35.44 C_gc_protect
	35.45 C_gc_unprotect
	35.46 C_pre_gc_hook
	35.47 C_post_gc_hook
	35.48 An example for simple calls to foreign code involving callbacks
	35.49 Notes:

	36 chicken-setup
	36.1 Extension libraries
	36.2 Installing extensions
	36.3 Creating extensions
	36.4 Procedures and macros available in setup scripts
	36.4.1 install-extension
	36.4.2 install-program
	36.4.3 install-script
	36.4.4 run
	36.4.5 compile
	36.4.6 make
	36.4.7 patch
	36.4.8 copy-file
	36.4.9 move-file
	36.4.10 remove-file*
	36.4.11 find-library
	36.4.12 find-header
	36.4.13 try-compile
	36.4.14 create-directory
	36.4.15 chicken-prefix
	36.4.16 installation-prefix
	36.4.17 program-path
	36.4.18 setup-root-directory
	36.4.19 setup-build-directory
	36.4.20 setup-verbose-flag
	36.4.21 setup-install-flag
	36.4.22 required-chicken-version
	36.4.23 required-extension-version
	36.4.24 cross-chicken
	36.4.25 host-extension

	36.5 Examples for extensions
	36.6 chicken-setup reference
	36.7 Windows notes
	36.8 Security
	36.9 Other modes of installation
	36.10 Linking extensions statically

	37 Data representation
	37.1 Immediate objects
	37.2 Non-immediate objects

	38 Bugs and limitations
	39 FAQ
	39.1 General
	39.1.1 Why yet another Scheme implementation?
	39.1.2 Why call it 'Chicken'?
	39.1.3 What should I do if I find a bug?
	39.1.4 Why are values defined with define-foreign-variable or define-constant or define-inline not seen outside of the containing source file?
	39.1.5 How does cond-expand know which features are registered in used units?
	39.1.6 Why are constants defined by define-constant not honoured in case constructs?
	39.1.7 How can I enable case sensitive reading/writing in user code?
	39.1.8 How can I change match-error-control during compilation?
	39.1.9 Why doesn't CHICKEN support the full numeric tower by default?
	39.1.10 How can I specialize a generic function method to match instances of every class?
	39.1.11 Does CHICKEN support native threads?
	39.1.12 Does CHICKEN support Unicode strings?
	39.1.13 Why do I get an "Error: invalid syntax: ..." using 'match' and 'syntax-case'?

	39.2 Platform specific
	39.2.1 How do I generate a DLL under MS Windows (tm) ?
	39.2.2 How do I generate a GUI application under Windows(tm)?
	39.2.3 Compiling very large files under Windows with the Microsoft C compiler fails with a message indicating insufficient heap space.
	39.2.4 When I run csi inside an emacs buffer under Windows, nothing happens.
	39.2.5 I load compiled code dynamically in a Windows GUI application and it crashes.
	39.2.6 On Windows, csc.exe seems to be doing something wrong.
	39.2.7 On Windows source and/or output filenames with embedded whitespace are not found.

	39.3 Customization
	39.3.1 How do I run custom startup code before the runtime-system is invoked?
	39.3.2 How can I add compiled user passes?

	39.4 Compiled macros
	39.4.1 Why is define-macro complaining about unbound variables?
	39.4.2 Why isn't load properly loading my library of macros?
	39.4.3 Why is include unable to load my hygienic macros?
	39.4.4 Why are macros not visible outside of the compilation unit in which they are defined?

	39.5 Warnings and errors
	39.5.1 Why does my program crash when I use callback functions (from Scheme to C and back to Scheme again)?
	39.5.2 Why does the linker complain about a missing function _C_..._toplevel?
	39.5.3 Why does the linker complain about a missing function _C_toplevel?
	39.5.4 Why does my program crash when I compile a file with -unsafe or unsafe declarations?
	39.5.5 Why do I get a warning when I define a global variable named match?
	39.5.6 Why don't toplevel-continuations captured in interpreted code work?
	39.5.7 Why does define-reader-ctor not work in my compiled program?
	39.5.8 Why do built-in units, such as srfi-1, srfi-18, and posix fail to load?
	39.5.9 How can I increase the size of the trace shown when runtime errors are detected?

	39.6 Optimizations
	39.6.1 How can I obtain smaller executables?
	39.6.2 How can I obtain faster executables?
	39.6.3 Which non-standard procedures are treated specially when the extended-bindings or usual-integrations declaration or compiler option is used?
	39.6.4 Can I load compiled code at runtime?

	39.7 Garbage collection
	39.7.1 Why does a loop that doesn't cons still trigger garbage collections?
	39.7.2 Why do finalizers not seem to work in simple cases in the interpeter?

	39.8 Interpreter
	39.8.1 Does CSI support history and autocompletion?
	39.8.2 Does code loaded with load run compiled or interpreted?

	39.9 Extensions
	39.9.1 How can I install Chicken eggs to a non-default location?
	39.9.2 Can I install chicken eggs as a non-root user?

	40 Acknowledgements
	41 Bibliography

