~ chicken-core (chicken-5) 8c4ad133d56d4c543261c2793b9bde9c77094f2c


commit 8c4ad133d56d4c543261c2793b9bde9c77094f2c
Author:     felix <felix@call-with-current-continuation.org>
AuthorDate: Wed Jan 28 11:52:37 2015 +0100
Commit:     Evan Hanson <evhan@foldling.org>
CommitDate: Wed Jan 28 11:52:37 2015 +0100

    Removed srfi-1 sources and import lib

diff --git a/srfi-1.import.scm b/srfi-1.import.scm
deleted file mode 100644
index 061eb738..00000000
--- a/srfi-1.import.scm
+++ /dev/null
@@ -1,132 +0,0 @@
-;;;; srfi-1.import.scm - import library for "srfi-1" module
-;
-; Copyright (c) 2008-2014, The CHICKEN Team
-; All rights reserved.
-;
-; Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
-; conditions are met:
-;
-;   Redistributions of source code must retain the above copyright notice, this list of conditions and the following
-;     disclaimer. 
-;   Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
-;     disclaimer in the documentation and/or other materials provided with the distribution. 
-;   Neither the name of the author nor the names of its contributors may be used to endorse or promote
-;     products derived from this software without specific prior written permission. 
-;
-; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
-; OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
-; AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
-; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-; CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
-; OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-; POSSIBILITY OF SUCH DAMAGE.
-
-
-(##sys#register-primitive-module
- 'srfi-1
- '(alist-cons
-   alist-copy
-   alist-delete
-   alist-delete!
-   any
-   append!
-   append-map
-   append-map!
-   append-reverse
-   append-reverse!
-   assoc
-   break
-   break!
-   car+cdr
-   circular-list
-   circular-list?
-   concatenate
-   concatenate!
-   cons*
-   count
-   delete
-   delete!
-   delete-duplicates
-   delete-duplicates!
-   dotted-list?
-   drop
-   drop-right
-   drop-right!
-   drop-while
-   eighth
-   every
-   fifth
-   filter
-   filter!
-   filter-map
-   find
-   find-tail
-   first
-   fold
-   fold-right
-   fourth
-   iota
-   last
-   last-pair
-   length+
-   list-copy
-   list-index
-   list-tabulate
-   list=
-   lset-adjoin
-   lset-diff+intersection
-   lset-diff+intersection!
-   lset-difference
-   lset-difference!
-   lset-intersection
-   lset-intersection!
-   lset-union
-   lset-union!
-   lset-xor
-   lset-xor!
-   lset<=
-   lset=
-   make-list
-   map
-   map!
-   map-in-order
-   member
-   ninth
-   not-pair?
-   null-list?
-   pair-fold
-   pair-fold-right
-   pair-for-each
-   partition
-   partition!
-   proper-list?
-   reduce
-   reduce-right
-   remove
-   remove!
-   reverse!
-   second
-   seventh
-   sixth
-   span
-   span!
-   split-at
-   split-at!
-   take
-   take!
-   take-right
-   take-while
-   take-while!
-   tenth
-   third
-   unfold
-   unfold-right
-   unzip1
-   unzip2
-   unzip3
-   unzip4
-   unzip5
-   xcons
-   zip))
diff --git a/srfi-1.scm b/srfi-1.scm
deleted file mode 100644
index 40b9f56a..00000000
--- a/srfi-1.scm
+++ /dev/null
@@ -1,1631 +0,0 @@
-;;;; srfi-1.scm - Shivers' reference implementation of SRFI-1
-
-
-; Some things to make it work with CHICKEN: (flw)
-;
-
-(declare
-  (unit srfi-1)
-  (disable-interrupts)
-  (hide ##srfi1#cars+cdrs/no-test ##srfi1#cdrs ##srfi1#cars+ ##srfi1#really-append-map ##srfi1#cars+cdrs+
-	##srfi1#cars+cdrs ##srfi1#lset2<=)
-  (not standard-bindings member assoc))
-
-(include "common-declarations.scm")
-
-(register-feature! 'srfi-1)
-
-
-;;; SRFI-1 list-processing library 			-*- Scheme -*-
-;;; Reference implementation
-;;;
-;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
-;;; this code as long as you do not remove this copyright notice or
-;;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
-;;;     -Olin
-
-;;; This is a library of list- and pair-processing functions. I wrote it after
-;;; carefully considering the functions provided by the libraries found in
-;;; R4RS/R5RS Scheme, MIT Scheme, Gambit, RScheme, MzScheme, slib, Common
-;;; Lisp, Bigloo, guile, T, APL and the SML standard basis. It is a pretty
-;;; rich toolkit, providing a superset of the functionality found in any of
-;;; the various Schemes I considered.
-
-;;; This implementation is intended as a portable reference implementation
-;;; for SRFI-1. See the porting notes below for more information.
-
-;;; Exported:
-;;; xcons tree-copy make-list list-tabulate cons* list-copy 
-;;; proper-list? circular-list? dotted-list? not-pair? null-list? list=
-;;; circular-list length+
-;;; iota
-;;; first second third fourth fifth sixth seventh eighth ninth tenth
-;;; car+cdr
-;;; take       drop       
-;;; take-right drop-right 
-;;; take!      drop-right!
-;;; split-at   split-at!
-;;; last last-pair
-;;; zip unzip1 unzip2 unzip3 unzip4 unzip5
-;;; count
-;;; append! append-reverse append-reverse! concatenate concatenate! 
-;;; unfold       fold       pair-fold       reduce
-;;; unfold-right fold-right pair-fold-right reduce-right
-;;; append-map append-map! map! pair-for-each filter-map map-in-order
-;;; filter  partition  remove
-;;; filter! partition! remove! 
-;;; find find-tail any every list-index
-;;; take-while drop-while take-while!
-;;; span break span! break!
-
-;;; In principle, the following R4RS list- and pair-processing procedures
-;;; are also part of this package's exports, although they are not defined
-;;; in this file:
-;;;   Primitives: cons pair? null? car cdr set-car! set-cdr!
-;;;   Non-primitives: list length append reverse cadr ... cddddr list-ref
-;;;                   memq memv assq assv
-;;;   (The non-primitives are defined in this file, but commented out.)
-;;;
-;;; These R4RS procedures have extended definitions in SRFI-1 and are defined
-;;; in this file:
-;;;   map for-each member assoc
-;;;
-;;; The remaining two R4RS list-processing procedures are not included: 
-;;;   list-tail (use drop)
-;;;   list? (use proper-list?)
-
-
-;;; A note on recursion and iteration/reversal:
-;;; Many iterative list-processing algorithms naturally compute the elements
-;;; of the answer list in the wrong order (left-to-right or head-to-tail) from
-;;; the order needed to cons them into the proper answer (right-to-left, or
-;;; tail-then-head). One style or idiom of programming these algorithms, then,
-;;; loops, consing up the elements in reverse order, then destructively 
-;;; reverses the list at the end of the loop. I do not do this. The natural
-;;; and efficient way to code these algorithms is recursively. This trades off
-;;; intermediate temporary list structure for intermediate temporary stack
-;;; structure. In a stack-based system, this improves cache locality and
-;;; lightens the load on the GC system. Don't stand on your head to iterate!
-;;; Recurse, where natural. Multiple-value returns make this even more
-;;; convenient, when the recursion/iteration has multiple state values.
-
-;;; Porting:
-;;; This is carefully tuned code; do not modify casually.
-;;;   - It is careful to share storage when possible;
-;;;   - Side-effecting code tries not to perform redundant writes.
-;;; 
-;;; That said, a port of this library to a specific Scheme system might wish
-;;; to tune this code to exploit particulars of the implementation. 
-;;; The single most important compiler-specific optimisation you could make
-;;; to this library would be to add rewrite rules or transforms to:
-;;; - transform applications of n-ary procedures (e.g. LIST=, CONS*, APPEND,
-;;;   LSET-UNION) into multiple applications of a primitive two-argument 
-;;;   variant.
-;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD, 
-;;;   ANY, EVERY) into open-coded loops. The killer here is that these 
-;;;   functions are n-ary. Handling the general case is quite inefficient,
-;;;   requiring many intermediate data structures to be allocated and
-;;;   discarded.
-;;; - transform applications of procedures that take optional arguments
-;;;   into calls to variants that do not take optional arguments. This
-;;;   eliminates unnecessary consing and parsing of the rest parameter.
-;;;
-;;; These transforms would provide BIG speedups. In particular, the n-ary
-;;; mapping functions are particularly slow and cons-intensive, and are good
-;;; candidates for tuning. I have coded fast paths for the single-list cases,
-;;; but what you really want to do is exploit the fact that the compiler
-;;; usually knows how many arguments are being passed to a particular
-;;; application of these functions -- they are usually explicitly called, not
-;;; passed around as higher-order values. If you can arrange to have your
-;;; compiler produce custom code or custom linkages based on the number of
-;;; arguments in the call, you can speed these functions up a *lot*. But this
-;;; kind of compiler technology no longer exists in the Scheme world as far as
-;;; I can see.
-;;;
-;;; Note that this code is, of course, dependent upon standard bindings for
-;;; the R5RS procedures -- i.e., it assumes that the variable CAR is bound
-;;; to the procedure that takes the car of a list. If your Scheme 
-;;; implementation allows user code to alter the bindings of these procedures
-;;; in a manner that would be visible to these definitions, then there might
-;;; be trouble. You could consider horrible kludgery along the lines of
-;;;    (define fact 
-;;;      (let ((= =) (- -) (* *))
-;;;        (letrec ((real-fact (lambda (n) 
-;;;                              (if (= n 0) 1 (* n (real-fact (- n 1)))))))
-;;;          real-fact)))
-;;; Or you could consider shifting to a reasonable Scheme system that, say,
-;;; has a module system protecting code from this kind of lossage.
-;;;
-;;; This code does a fair amount of run-time argument checking. If your
-;;; Scheme system has a sophisticated compiler that can eliminate redundant
-;;; error checks, this is no problem. However, if not, these checks incur
-;;; some performance overhead -- and, in a safe Scheme implementation, they
-;;; are in some sense redundant: if we don't check to see that the PROC 
-;;; parameter is a procedure, we'll find out anyway three lines later when
-;;; we try to call the value. It's pretty easy to rip all this argument 
-;;; checking code out if it's inappropriate for your implementation -- just
-;;; nuke every call to CHECK-ARG.
-;;;
-;;; On the other hand, if you *do* have a sophisticated compiler that will
-;;; actually perform soft-typing and eliminate redundant checks (Rice's systems
-;;; being the only possible candidate of which I'm aware), leaving these checks 
-;;; in can *help*, since their presence can be elided in redundant cases,
-;;; and in cases where they are needed, performing the checks early, at
-;;; procedure entry, can "lift" a check out of a loop. 
-;;;
-;;; Finally, I have only checked the properties that can portably be checked
-;;; with R5RS Scheme -- and this is not complete. You may wish to alter
-;;; the CHECK-ARG parameter checks to perform extra, implementation-specific
-;;; checks, such as procedure arity for higher-order values.
-;;;
-;;; The code has only these non-R4RS dependencies:
-;;;   A few calls to an ERROR procedure;
-;;;   Uses of the R5RS multiple-value procedure VALUES and the m-v binding
-;;;     RECEIVE macro (which isn't R5RS, but is a trivial macro).
-;;;   Many calls to a parameter-checking procedure check-arg:
-;;;    (define (check-arg pred val caller)
-;;;      (let lp ((val val))
-;;;        (if (pred val) val (lp (error "Bad argument" val pred caller)))))
-;;;   A few uses of the LET-OPTIONAL and :OPTIONAL macros for parsing
-;;;     optional arguments.
-;;;
-;;; Most of these procedures use the NULL-LIST? test to trigger the
-;;; base case in the inner loop or recursion. The NULL-LIST? function
-;;; is defined to be a careful one -- it raises an error if passed a
-;;; non-nil, non-pair value. The spec allows an implementation to use
-;;; a less-careful implementation that simply defines NULL-LIST? to
-;;; be NOT-PAIR?. This would speed up the inner loops of these procedures
-;;; at the expense of having them silently accept dotted lists.
-
-;;; A note on dotted lists:
-;;; I, personally, take the view that the only consistent view of lists
-;;; in Scheme is the view that *everything* is a list -- values such as
-;;; 3 or "foo" or 'bar are simply empty dotted lists. This is due to the
-;;; fact that Scheme actually has no true list type. It has a pair type,
-;;; and there is an *interpretation* of the trees built using this type
-;;; as lists.
-;;;
-;;; I lobbied to have these list-processing procedures hew to this
-;;; view, and accept any value as a list argument. I was overwhelmingly
-;;; overruled during the SRFI discussion phase. So I am inserting this
-;;; text in the reference lib and the SRFI spec as a sort of "minority
-;;; opinion" dissent.
-;;;
-;;; Many of the procedures in this library can be trivially redefined
-;;; to handle dotted lists, just by changing the NULL-LIST? base-case
-;;; check to NOT-PAIR?, meaning that any non-pair value is taken to be
-;;; an empty list. For most of these procedures, that's all that is
-;;; required.
-;;;
-;;; However, we have to do a little more work for some procedures that
-;;; *produce* lists from other lists.  Were we to extend these procedures to
-;;; accept dotted lists, we would have to define how they terminate the lists
-;;; produced as results when passed a dotted list. I designed a coherent set
-;;; of termination rules for these cases; this was posted to the SRFI-1
-;;; discussion list. I additionally wrote an earlier version of this library
-;;; that implemented that spec. It has been discarded during later phases of
-;;; the definition and implementation of this library.
-;;;
-;;; The argument *against* defining these procedures to work on dotted
-;;; lists is that dotted lists are the rare, odd case, and that by 
-;;; arranging for the procedures to handle them, we lose error checking
-;;; in the cases where a dotted list is passed by accident -- e.g., when
-;;; the programmer swaps a two arguments to a list-processing function,
-;;; one being a scalar and one being a list. For example,
-;;;     (member '(1 3 5 7 9) 7)
-;;; This would quietly return #f if we extended MEMBER to accept dotted
-;;; lists.
-;;;
-;;; The SRFI discussion record contains more discussion on this topic.
-
-
-;;; Constructors
-;;;;;;;;;;;;;;;;
-
-;;; Occasionally useful as a value to be passed to a fold or other
-;;; higher-order procedure.
-(define (xcons d a) (cons a d))
-
-;;;; Recursively copy every cons.
-;(define (tree-copy x)
-;  (let recur ((x x))
-;    (if (not (pair? x)) x
-;	(cons (recur (car x)) (recur (cdr x))))))
-
-;;; Make a list of length LEN.
-
-(define (make-list len . maybe-elt)
-;  (check-arg (lambda (n) (and (integer? n) (>= n 0))) len make-list)
-  (##sys#check-exact len 'make-list)
-  (let ((elt (cond ((null? maybe-elt) #f) ; Default value
-		   ((null? (cdr maybe-elt)) (car maybe-elt))
-		   (else (##sys#error 'make-list "Too many arguments to MAKE-LIST"
-				(cons len maybe-elt))))))
-    (do ((i len (fx- i 1))
-	 (ans '() (cons elt ans)))
-	((fx<= i 0) ans))))
-
-
-;(define (list . ans) ans)	; R4RS
-
-
-;;; Make a list of length LEN. Elt i is (PROC i) for 0 <= i < LEN.
-
-(define (list-tabulate len proc)
-;  (check-arg (lambda (n) (and (integer? n) (>= n 0))) len list-tabulate)
-;  (check-arg procedure? proc list-tabulate)
-  (##sys#check-exact len 'list-tabulate)
-  (do ((i (fx- len 1) (fx- i 1))
-       (ans '() (cons (proc i) ans)))
-      ((fx< i 0) ans)))
-
-;;; (cons* a1 a2 ... an) = (cons a1 (cons a2 (cons ... an)))
-;;; (cons* a1) = a1	(cons* a1 a2 ...) = (cons a1 (cons* a2 ...))
-;;;
-;;; (cons first (unfold not-pair? car cdr rest values))
-
-(define (cons* first . rest)
-  (let recur ((x first) (rest rest))
-    (if (pair? rest)
-	(cons x (recur (car rest) (cdr rest)))
-	x)))
-
-;;; (unfold not-pair? car cdr lis values)
-
-(define (list-copy lis)				
-  (let recur ((lis lis))			
-    (if (pair? lis)				
-	(cons (car lis) (recur (cdr lis)))	
-	lis)))					
-
-;;; IOTA count [start step]	(start start+step ... start+(count-1)*step)
-
-(define (iota count . maybe-start+step)
-;  (check-arg integer? count iota)
-  (##sys#check-number count 'iota)
-  (if (< count 0) (##sys#error 'iota "Negative step count" iota count))
-  (let-optionals maybe-start+step ((start 0) ; Olin, I'm tired of fixing your stupid bugs - why didn't
-				   (step 1) ) ; you use your own macros, then?
-    (##sys#check-number start 'iota)
-    (##sys#check-number step 'iota)
-;    (check-arg number? start iota)
-;    (check-arg number? step iota)
-    (let ((last-val (+ start (* (- count 1) step))))
-      (do ((count count (- count 1))
-	   (val last-val (- val step))
-	   (ans '() (cons val ans)))
-	  ((<= count 0)  ans)))))
-	  
-;;; I thought these were lovely, but the public at large did not share my
-;;; enthusiasm...
-;;; :IOTA to		(0 ... to-1)
-;;; :IOTA from to	(from ... to-1)
-;;; :IOTA from to step  (from from+step ...)
-
-;;; IOTA: to		(1 ... to)
-;;; IOTA: from to	(from+1 ... to)
-;;; IOTA: from to step	(from+step from+2step ...)
-
-;(define (##srfi1#parse-iota-args arg1 rest-args proc)
-;  (let ((check (lambda (n) (check-arg integer? n proc))))
-;    (check arg1)
-;    (if (pair? rest-args)
-;	(let ((arg2 (check (car rest-args)))
-;	      (rest (cdr rest-args)))
-;	  (if (pair? rest)
-;	      (let ((arg3 (check (car rest)))
-;		    (rest (cdr rest)))
-;		(if (pair? rest) (error "Too many parameters" proc arg1 rest-args)
-;		    (values arg1 arg2 arg3)))
-;	      (values arg1 arg2 1)))
-;	(values 0 arg1 1))))
-;
-;(define (iota: arg1 . rest-args)
-;  (receive (from to step) (##srfi1#parse-iota-args arg1 rest-args iota:)
-;    (let* ((numsteps (floor (/ (- to from) step)))
-;	   (last-val (+ from (* step numsteps))))
-;      (if (< numsteps 0) (error "Negative step count" iota: from to step))
-;      (do ((steps-left numsteps (- steps-left 1))
-;	   (val last-val (- val step))
-;	   (ans '() (cons val ans)))
-;	  ((<= steps-left 0) ans)))))
-;
-;
-;(define (:iota arg1 . rest-args)
-;  (receive (from to step) (##srfi1#parse-iota-args arg1 rest-args :iota)
-;    (let* ((numsteps (ceiling (/ (- to from) step)))
-;	   (last-val (+ from (* step (- numsteps 1)))))
-;      (if (< numsteps 0) (error "Negative step count" :iota from to step))
-;      (do ((steps-left numsteps (- steps-left 1))
-;	   (val last-val (- val step))
-;	   (ans '() (cons val ans)))
-;	  ((<= steps-left 0) ans)))))
-
-
-
-(define (circular-list val1 . vals)
-  (let ((ans (cons val1 vals)))
-    (set-cdr! (last-pair ans) ans)
-    ans))
-
-;;; <proper-list> ::= ()			; Empty proper list
-;;;		  |   (cons <x> <proper-list>)	; Proper-list pair
-;;; Note that this definition rules out circular lists -- and this
-;;; function is required to detect this case and return false.
-
-(define proper-list? list?)
-
-#;(define (proper-list? x)
-  (let lp ((x x) (lag x))
-    (if (pair? x)
-	(let ((x (cdr x)))
-	  (if (pair? x)
-	      (let ((x   (cdr x))
-		    (lag (cdr lag)))
-		(and (not (eq? x lag)) (lp x lag)))
-	      (null? x)))
-	(null? x))))
-
-
-;;; A dotted list is a finite list (possibly of length 0) terminated
-;;; by a non-nil value. Any non-cons, non-nil value (e.g., "foo" or 5)
-;;; is a dotted list of length 0.
-;;;
-;;; <dotted-list> ::= <non-nil,non-pair>	; Empty dotted list
-;;;               |   (cons <x> <dotted-list>)	; Proper-list pair
-
-(define (dotted-list? x)
-  (let lp ((x x) (lag x))
-    (if (pair? x)
-	(let ((x (cdr x)))
-	  (if (pair? x)
-	      (let ((x   (cdr x))
-		    (lag (cdr lag)))
-		(and (not (eq? x lag)) (lp x lag)))
-	      (not (null? x))))
-	(not (null? x)))))
-
-(define (circular-list? x)
-  (let lp ((x x) (lag x))
-    (and (pair? x)
-	 (let ((x (cdr x)))
-	   (and (pair? x)
-		(let ((x   (cdr x))
-		      (lag (cdr lag)))
-		  (or (eq? x lag) (lp x lag))))))))
-
-(define (not-pair? x) (##core#inline "C_i_not_pair_p" x))
-
-;;; This is a legal definition which is fast and sloppy:
-;;;     (define null-list? not-pair?)
-;;; but we'll provide a more careful one:
-(define (null-list? l) (##core#inline "C_i_null_list_p" l))           
-
-(define (list= = . lists)
-  (##sys#check-closure = 'list=)
-  (or (null? lists) ; special case
-      (let lp1 ((list-a (car lists)) (others (cdr lists)))
-	(or (null? others)
-	    (let ((list-b (car others))
-		  (others (cdr others)))
-	      (if (eq? list-a list-b)	; EQ? => LIST=
-		  (lp1 list-b others)
-		  (let lp2 ((la list-a) (lb list-b))
-		    (if (null-list? la)
-			(and (null-list? lb)
-			     (lp1 list-b others))
-			(and (not (null-list? lb))
-			     (= (car la) (car lb))
-			     (lp2 (cdr la) (cdr lb)))))))))))
-			
-
-
-;;; R4RS, so commented out.
-;(define (length x)			; LENGTH may diverge or
-;  (let lp ((x x) (len 0))		; raise an error if X is
-;    (if (pair? x)			; a circular list. This version
-;        (lp (cdr x) (+ len 1))		; diverges.
-;        len)))
-
-(define (length+ x)			; Returns #f if X is circular.
-  (let lp ((x x) (lag x) (len 0))
-    (if (pair? x)
-	(let ((x (cdr x))
-	      (len (fx+ len 1)))
-	  (if (pair? x)
-	      (let ((x   (cdr x))
-		    (lag (cdr lag))
-		    (len (fx+ len 1)))
-		(and (not (eq? x lag)) (lp x lag len)))
-	      len))
-	len)))
-
-(define (zip list1 . more-lists) (apply map list list1 more-lists))
-
-
-;;; Selectors
-;;;;;;;;;;;;;
-
-;;; R4RS non-primitives:
-;(define (caar   x) (car (car x)))
-;(define (cadr   x) (car (cdr x)))
-;(define (cdar   x) (cdr (car x)))
-;(define (cddr   x) (cdr (cdr x)))
-;
-;(define (caaar  x) (caar (car x)))
-;(define (caadr  x) (caar (cdr x)))
-;(define (cadar  x) (cadr (car x)))
-;(define (caddr  x) (cadr (cdr x)))
-;(define (cdaar  x) (cdar (car x)))
-;(define (cdadr  x) (cdar (cdr x)))
-;(define (cddar  x) (cddr (car x)))
-;(define (cdddr  x) (cddr (cdr x)))
-;
-;(define (caaaar x) (caaar (car x)))
-;(define (caaadr x) (caaar (cdr x)))
-;(define (caadar x) (caadr (car x)))
-;(define (caaddr x) (caadr (cdr x)))
-;(define (cadaar x) (cadar (car x)))
-;(define (cadadr x) (cadar (cdr x)))
-;(define (caddar x) (caddr (car x)))
-;(define (cadddr x) (caddr (cdr x)))
-;(define (cdaaar x) (cdaar (car x)))
-;(define (cdaadr x) (cdaar (cdr x)))
-;(define (cdadar x) (cdadr (car x)))
-;(define (cdaddr x) (cdadr (cdr x)))
-;(define (cddaar x) (cddar (car x)))
-;(define (cddadr x) (cddar (cdr x)))
-;(define (cdddar x) (cdddr (car x)))
-;(define (cddddr x) (cdddr (cdr x)))
-
-
-(define first  car)
-(define second cadr)
-(define third  caddr)
-(define fourth cadddr)
-(define (fifth   x) (car    (cddddr x)))
-(define (sixth   x) (cadr   (cddddr x)))
-(define (seventh x) (caddr  (cddddr x)))
-(define (eighth  x) (cadddr (cddddr x)))
-(define (ninth   x) (car  (cddddr (cddddr x))))
-(define (tenth   x) (cadr (cddddr (cddddr x))))
-
-(define (car+cdr pair)
-  (##sys#check-pair pair 'car+cdr)
-  (values (##sys#slot pair 0) (##sys#slot pair 1)) )
-
-;;; take & drop
-
-(define (take lis k)
-  (##sys#check-exact k 'take)
-;  (check-arg integer? k take)
-  (let recur ((lis lis) (k k))
-    (if (eq? 0 k) '()
-	(cons (car lis)
-	      (recur (cdr lis) (fx- k 1))))))
-
-(define (drop lis k)
-  (##sys#check-exact k 'drop)
-;  (check-arg integer? k drop)
-  (let iter ((lis lis) (k k))
-    (if (eq? 0 k) lis (iter (cdr lis) (fx- k 1)))))
-
-(define (take! lis k)
-  (##sys#check-exact k 'take!)
-;  (check-arg integer? k take!)
-  (if (eq? 0 k) '()
-      (begin (set-cdr! (drop lis (fx- k 1)) '())
-	     lis)))
-
-;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list, 
-;;; off by K, then chasing down the list until the lead pointer falls off
-;;; the end.
-
-(define (take-right lis k)
-;  (check-arg integer? k take-right)
-  (let lp ((lag lis)  (lead (drop lis k)))
-    (if (pair? lead)
-	(lp (cdr lag) (cdr lead))
-	lag)))
-
-(define (drop-right lis k)
-;  (check-arg integer? k drop-right)
-  (let recur ((lag lis) (lead (drop lis k)))
-    (if (pair? lead)
-	(cons (car lag) (recur (cdr lag) (cdr lead)))
-	'())))
-
-;;; In this function, LEAD is actually K+1 ahead of LAG. This lets
-;;; us stop LAG one step early, in time to smash its cdr to ().
-(define (drop-right! lis k)
-;  (check-arg integer? k drop-right!)
-  (let ((lead (drop lis k)))
-    (if (pair? lead)
-
-	(let lp ((lag lis)  (lead (cdr lead)))	; Standard case
-	  (if (pair? lead)
-	      (lp (cdr lag) (cdr lead))
-	      (begin (set-cdr! lag '())
-		     lis)))
-
-	'())))	; Special case dropping everything -- no cons to side-effect.
-
-;(define (list-ref lis i) (car (drop lis i)))	; R4RS
-
-;;; These use the APL convention, whereby negative indices mean 
-;;; "from the right." I liked them, but they didn't win over the
-;;; SRFI reviewers.
-;;; K >= 0: Take and drop  K elts from the front of the list.
-;;; K <= 0: Take and drop -K elts from the end   of the list.
-
-;(define (take lis k)
-;  (check-arg integer? k take)
-;  (if (negative? k)
-;      (list-tail lis (+ k (length lis)))
-;      (let recur ((lis lis) (k k))
-;	(if (zero? k) '()
-;	    (cons (car lis)
-;		  (recur (cdr lis) (- k 1)))))))
-;
-;(define (drop lis k)
-;  (check-arg integer? k drop)
-;  (if (negative? k)
-;      (let recur ((lis lis) (nelts (+ k (length lis))))
-;	(if (zero? nelts) '()
-;	    (cons (car lis)
-;		  (recur (cdr lis) (- nelts 1)))))
-;      (list-tail lis k)))
-;
-;
-;(define (take! lis k)
-;  (check-arg integer? k take!)
-;  (cond ((zero? k) '())
-;	((positive? k)
-;	 (set-cdr! (list-tail lis (- k 1)) '())
-;	 lis)
-;	(else (list-tail lis (+ k (length lis))))))
-;
-;(define (drop! lis k)
-;  (check-arg integer? k drop!)
-;  (if (negative? k)
-;      (let ((nelts (+ k (length lis))))
-;	(if (zero? nelts) '()
-;	    (begin (set-cdr! (list-tail lis (- nelts 1)) '())
-;		   lis)))
-;      (list-tail lis k)))
-
-(define (split-at x k)
-  (##sys#check-exact k 'split-at)
-;  (check-arg integer? k split-at)
-  (let recur ((lis x) (k k))
-    (if (eq? 0 k) (values '() lis)
-	(receive (prefix suffix) (recur (cdr lis) (fx- k 1))
-	  (values (cons (car lis) prefix) suffix)))))
-
-(define (split-at! x k)
-  (##sys#check-exact k 'split-at!)
-;  (check-arg integer? k split-at!)
-  (if (eq? 0 k) (values '() x)
-      (let* ((prev (drop x (fx- k 1)))
-	     (suffix (cdr prev)))
-	(set-cdr! prev '())
-	(values x suffix))))
-
-
-(define (last lis) (car (last-pair lis)))
-
-(define (last-pair lis)
-;  (check-arg pair? lis last-pair)
-  (let lp ((lis lis))
-    (let ((tail (cdr lis)))
-      (if (pair? tail) (lp tail) lis))))
-
-
-;;; Unzippers -- 1 through 5
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-(define (unzip1 lis) (map car lis))
-
-(define (unzip2 lis)
-  (let recur ((lis lis))
-    (if (null-list? lis) (values lis lis)	; Use NOT-PAIR? to handle
-	(let ((elt (car lis)))			; dotted lists.
-	  (receive (a b) (recur (cdr lis))
-	    (values (cons (car  elt) a)
-		    (cons (cadr elt) b)))))))
-
-(define (unzip3 lis)
-  (let recur ((lis lis))
-    (if (null-list? lis) (values lis lis lis)
-	(let ((elt (car lis)))
-	  (receive (a b c) (recur (cdr lis))
-	    (values (cons (car   elt) a)
-		    (cons (cadr  elt) b)
-		    (cons (caddr elt) c)))))))
-
-(define (unzip4 lis)
-  (let recur ((lis lis))
-    (if (null-list? lis) (values lis lis lis lis)
-	(let ((elt (car lis)))
-	  (receive (a b c d) (recur (cdr lis))
-	    (values (cons (car    elt) a)
-		    (cons (cadr   elt) b)
-		    (cons (caddr  elt) c)
-		    (cons (cadddr elt) d)))))))
-
-(define (unzip5 lis)
-  (let recur ((lis lis))
-    (if (null-list? lis) (values lis lis lis lis lis)
-	(let ((elt (car lis)))
-	  (receive (a b c d e) (recur (cdr lis))
-	    (values (cons (car     elt) a)
-		    (cons (cadr    elt) b)
-		    (cons (caddr   elt) c)
-		    (cons (cadddr  elt) d)
-		    (cons (car (cddddr  elt)) e)))))))
-
-
-;;; append! append-reverse append-reverse! concatenate concatenate!
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-(define (append! . lists)
-  ;; First, scan through lists looking for a non-empty one.
-  (let lp ((lists lists) (prev '()))
-    (if (not (pair? lists)) prev
-	(let ((first (car lists))
-	      (rest (cdr lists)))
-	  (if (not (pair? first)) (lp rest first)
-
-	      ;; Now, do the splicing.
-	      (let lp2 ((tail-cons (last-pair first))
-			(rest rest))
-		(if (pair? rest)
-		    (let ((next (car rest))
-			  (rest (cdr rest)))
-		      (set-cdr! tail-cons next)
-		      (lp2 (if (pair? next) (last-pair next) tail-cons)
-			   rest))
-		    first)))))))
-
-;;; APPEND is R4RS.
-;(define (append . lists)
-;  (if (pair? lists)
-;      (let recur ((list1 (car lists)) (lists (cdr lists)))
-;        (if (pair? lists)
-;            (let ((tail (recur (car lists) (cdr lists))))
-;              (fold-right cons tail list1)) ; Append LIST1 & TAIL.
-;            list1))
-;      '()))
-
-;(define (append-reverse rev-head tail) (fold cons tail rev-head))
-
-;(define (append-reverse! rev-head tail)
-;  (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair)
-;             tail
-;             rev-head))
-
-;;; Hand-inline the FOLD and PAIR-FOLD ops for speed.
-
-(define (append-reverse rev-head tail)
-  (let lp ((rev-head rev-head) (tail tail))
-    (if (null-list? rev-head) tail
-	(lp (cdr rev-head) (cons (car rev-head) tail)))))
-
-(define (append-reverse! rev-head tail)
-  (let lp ((rev-head rev-head) (tail tail))
-    (if (null-list? rev-head) tail
-	(let ((next-rev (cdr rev-head)))
-	  (set-cdr! rev-head tail)
-	  (lp next-rev rev-head)))))
-
-
-(define (concatenate  lists) (reduce-right append  '() lists))
-(define (concatenate! lists) (reduce-right append! '() lists))
-
-;;; Fold/map internal utilities
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;;; These little internal utilities are used by the general
-;;; fold & mapper funs for the n-ary cases . It'd be nice if they got inlined.
-;;; One the other hand, the n-ary cases are painfully inefficient as it is.
-;;; An aggressive implementation should simply re-write these functions 
-;;; for raw efficiency; I have written them for as much clarity, portability,
-;;; and simplicity as can be achieved.
-;;;
-;;; I use the dreaded call/cc to do local aborts. A good compiler could
-;;; handle this with extreme efficiency. An implementation that provides
-;;; a one-shot, non-persistent continuation grabber could help the compiler
-;;; out by using that in place of the call/cc's in these routines.
-;;;
-;;; These functions have funky definitions that are precisely tuned to
-;;; the needs of the fold/map procs -- for example, to minimize the number
-;;; of times the argument lists need to be examined.
-
-;;; Return (map cdr lists). 
-;;; However, if any element of LISTS is empty, just abort and return '().
-(define (##srfi1#cdrs lists)
-  (##sys#call-with-current-continuation
-    (lambda (abort)
-      (let recur ((lists lists))
-	(if (pair? lists)
-	    (let ((lis (car lists)))
-	      (if (null-list? lis) (abort '())
-		  (cons (cdr lis) (recur (cdr lists)))))
-	    '())))))
-
-(define (##srfi1#cars+ lists last-elt)	; (append! (##sys#map car lists) (list last-elt))
-  (let recur ((lists lists))
-    (if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
-
-;;; LISTS is a (not very long) non-empty list of lists.
-;;; Return two lists: the cars & the cdrs of the lists.
-;;; However, if any of the lists is empty, just abort and return [() ()].
-
-(define (##srfi1#cars+cdrs lists)
-  (##sys#call-with-current-continuation
-    (lambda (abort)
-      (let recur ((lists lists))
-        (if (pair? lists)
-	    (receive (list other-lists) (car+cdr lists)
-	      (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
-		  (receive (a d) (car+cdr list)
-		    (receive (cars cdrs) (recur other-lists)
-		      (values (cons a cars) (cons d cdrs))))))
-	    (values '() '()))))))
-
-;;; Like ##srfi1#CARS+CDRS, but we pass in a final elt tacked onto the end of the
-;;; cars list. What a hack.
-(define (##srfi1#cars+cdrs+ lists cars-final)
-  (##sys#call-with-current-continuation
-    (lambda (abort)
-      (let recur ((lists lists))
-        (if (pair? lists)
-	    (receive (list other-lists) (car+cdr lists)
-	      (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
-		  (receive (a d) (car+cdr list)
-		    (receive (cars cdrs) (recur other-lists)
-		      (values (cons a cars) (cons d cdrs))))))
-	    (values (list cars-final) '()))))))
-
-;;; Like ##srfi1#CARS+CDRS, but blow up if any list is empty.
-(define (##srfi1#cars+cdrs/no-test lists)
-  (let recur ((lists lists))
-    (if (pair? lists)
-	(receive (list other-lists) (car+cdr lists)
-	  (receive (a d) (car+cdr list)
-	    (receive (cars cdrs) (recur other-lists)
-	      (values (cons a cars) (cons d cdrs)))))
-	(values '() '()))))
-
-
-;;; count
-;;;;;;;;;
-(define (count pred list1 . lists)
-;  (check-arg procedure? pred count)
-  (if (pair? lists)
-
-      ;; N-ary case
-      (let lp ((list1 list1) (lists lists) (i 0))
-	(if (null-list? list1) i
-	    (receive (as ds) (##srfi1#cars+cdrs lists)
-	      (if (null? as) i
-		  (lp (cdr list1) ds
-		      (if (apply pred (car list1) as) (fx+ i 1) i))))))
-
-      ;; Fast path
-      (let lp ((lis list1) (i 0))
-	(if (null-list? lis) i
-	    (lp (cdr lis) (if (pred (car lis)) (fx+ i 1) i))))))
-
-
-;;; fold/unfold
-;;;;;;;;;;;;;;;
-
-(define (unfold-right p f g seed . maybe-tail)
-;  (check-arg procedure? p unfold-right)
-;  (check-arg procedure? f unfold-right)
-;  (check-arg procedure? g unfold-right)
-  (let lp ((seed seed) (ans (optional maybe-tail '())))
-    (if (p seed) ans
-	(lp (g seed)
-	    (cons (f seed) ans)))))
-
-
-(define (unfold p f g seed . maybe-tail-gen)
-;  (check-arg procedure? p unfold)
-;  (check-arg procedure? f unfold)
-;  (check-arg procedure? g unfold)
-  (if (pair? maybe-tail-gen)
-
-      (let ((tail-gen (car maybe-tail-gen)))
-	(if (pair? (cdr maybe-tail-gen))
-	    (apply error "Too many arguments" unfold p f g seed maybe-tail-gen)
-
-	    (let recur ((seed seed))
-	      (if (p seed) (tail-gen seed)
-		  (cons (f seed) (recur (g seed)))))))
-
-      (let recur ((seed seed))
-	(if (p seed) '()
-	    (cons (f seed) (recur (g seed)))))))
-      
-
-(define (fold kons knil lis1 . lists)
-;  (check-arg procedure? kons fold)
-  (if (pair? lists)
-      (let lp ((lists (cons lis1 lists)) (ans knil))	; N-ary case
-	(receive (cars+ans cdrs) (##srfi1#cars+cdrs+ lists ans)
-	  (if (null? cars+ans) ans ; Done.
-	      (lp cdrs (apply kons cars+ans)))))
-	    
-      (let lp ((lis lis1) (ans knil))			; Fast path
-	(if (null-list? lis) ans
-	    (lp (cdr lis) (kons (car lis) ans))))))
-
-
-(define (fold-right kons knil lis1 . lists)
-;  (check-arg procedure? kons fold-right)
-  (if (pair? lists)
-      (let recur ((lists (cons lis1 lists)))		; N-ary case
-	(let ((cdrs (##srfi1#cdrs lists)))
-	  (if (null? cdrs) knil
-	      (apply kons (##srfi1#cars+ lists (recur cdrs))))))
-
-      (let recur ((lis lis1))				; Fast path
-	(if (null-list? lis) knil
-	    (let ((head (car lis)))
-	      (kons head (recur (cdr lis))))))))
-
-
-(define (pair-fold-right f zero lis1 . lists)
-;  (check-arg procedure? f pair-fold-right)
-  (if (pair? lists)
-      (let recur ((lists (cons lis1 lists)))		; N-ary case
-	(let ((cdrs (##srfi1#cdrs lists)))
-	  (if (null? cdrs) zero
-	      (apply f (append! lists (list (recur cdrs)))))))
-
-      (let recur ((lis lis1))				; Fast path
-	(if (null-list? lis) zero (f lis (recur (cdr lis)))))))
-
-(define (pair-fold f zero lis1 . lists)
-;  (check-arg procedure? f pair-fold)
-  (if (pair? lists)
-      (let lp ((lists (cons lis1 lists)) (ans zero))	; N-ary case
-	(let ((tails (##srfi1#cdrs lists)))
-	  (if (null? tails) ans
-	      (lp tails (apply f (append! lists (list ans)))))))
-
-      (let lp ((lis lis1) (ans zero))
-	(if (null-list? lis) ans
-	    (let ((tail (cdr lis)))		; Grab the cdr now,
-	      (lp tail (f lis ans)))))))	; in case F SET-CDR!s LIS.
-      
-
-;;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.
-;;; These cannot meaningfully be n-ary.
-
-(define (reduce f ridentity lis)
-;  (check-arg procedure? f reduce)
-  (if (null-list? lis) ridentity
-      (fold f (car lis) (cdr lis))))
-
-(define (reduce-right f ridentity lis)
-;  (check-arg procedure? f reduce-right)
-  (if (null-list? lis) ridentity
-      (let recur ((head (car lis)) (lis (cdr lis)))
-	(if (pair? lis)
-	    (f head (recur (car lis) (cdr lis)))
-	    head))))
-
-
-
-;;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-(define (append-map f lis1 . lists)
-  (##srfi1#really-append-map append-map  append  f lis1 lists))
-(define (append-map! f lis1 . lists) 
-  (##srfi1#really-append-map append-map! append! f lis1 lists))
-
-(define (##srfi1#really-append-map who appender f lis1 lists)
-;  (check-arg procedure? f who)
-  (if (pair? lists)
-      (receive (cars cdrs) (##srfi1#cars+cdrs (cons lis1 lists))
-	(if (null? cars) '()
-	    (let recur ((cars cars) (cdrs cdrs))
-	      (let ((vals (apply f cars)))
-		(receive (cars2 cdrs2) (##srfi1#cars+cdrs cdrs)
-		  (if (null? cars2) vals
-		      (appender vals (recur cars2 cdrs2))))))))
-
-      ;; Fast path
-      (if (null-list? lis1) '()
-	  (let recur ((elt (car lis1)) (rest (cdr lis1)))
-	    (let ((vals (f elt)))
-	      (if (null-list? rest) vals
-		  (appender vals (recur (car rest) (cdr rest)))))))))
-
-
-(define (pair-for-each proc lis1 . lists)
-;  (check-arg procedure? proc pair-for-each)
-  (if (pair? lists)
-
-      (let lp ((lists (cons lis1 lists)))
-	(let ((tails (##srfi1#cdrs lists)))
-	  (if (pair? tails)
-	      (begin (apply proc lists)
-		     (lp tails)))))
-
-      ;; Fast path.
-      (let lp ((lis lis1))
-	(if (not (null-list? lis))
-	    (let ((tail (cdr lis)))	; Grab the cdr now,
-	      (proc lis)		; in case PROC SET-CDR!s LIS.
-	      (lp tail))))))
-
-;;; We stop when LIS1 runs out, not when any list runs out.
-(define (map! f lis1 . lists)
-;  (check-arg procedure? f map!)
-  (if (pair? lists)
-      (let lp ((lis1 lis1) (lists lists))
-	(if (not (null-list? lis1))
-	    (receive (heads tails) (##srfi1#cars+cdrs/no-test lists)
-	      (set-car! lis1 (apply f (car lis1) heads))
-	      (lp (cdr lis1) tails))))
-
-      ;; Fast path.
-      (pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))
-  lis1)
-
-
-;;; Map F across L, and save up all the non-false results.
-(define (filter-map f lis1 . lists)
-;  (check-arg procedure? f filter-map)
-  (if (pair? lists)
-      (let recur ((lists (cons lis1 lists)))
-	(receive (cars cdrs) (##srfi1#cars+cdrs lists)
-	  (if (pair? cars)
-	      (cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
-		    (else (recur cdrs))) ; Tail call in this arm.
-	      '())))
-	    
-      ;; Fast path.
-      (let recur ((lis lis1))
-	(if (null-list? lis) lis
-	    (let ((tail (recur (cdr lis))))
-	      (cond ((f (car lis)) => (lambda (x) (cons x tail)))
-		    (else tail)))))))
-
-
-;;; Map F across lists, guaranteeing to go left-to-right.
-;;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
-;;; in which case this procedure may simply be defined as a synonym for MAP.
-
-(define (map-in-order f lis1 . lists)
-;  (check-arg procedure? f map-in-order)
-  (if (pair? lists)
-      (let recur ((lists (cons lis1 lists)))
-	(receive (cars cdrs) (##srfi1#cars+cdrs lists)
-	  (if (pair? cars)
-	      (let ((x (apply f cars)))		; Do head first,
-		(cons x (recur cdrs)))		; then tail.
-	      '())))
-	    
-      ;; Fast path.
-      (let recur ((lis lis1))
-	(if (null-list? lis) lis
-	    (let ((tail (cdr lis))
-		  (x (f (car lis))))		; Do head first,
-	      (cons x (recur tail)))))))	; then tail.
-
-
-;;; We extend MAP to handle arguments of unequal length.
-(define map map-in-order)	
-
-
-;;; filter, remove, partition
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;;; FILTER, REMOVE, PARTITION and their destructive counterparts do not
-;;; disorder the elements of their argument.
-
-;; This FILTER shares the longest tail of L that has no deleted elements.
-;; If Scheme had multi-continuation calls, they could be made more efficient.
-
-(define (filter pred lis)			; Sleazing with EQ? makes this
-;  (check-arg procedure? pred filter)		; one faster.
-  (let recur ((lis lis))		
-    (if (null-list? lis) lis			; Use NOT-PAIR? to handle dotted lists.
-	(let ((head (car lis))
-	      (tail (cdr lis)))
-	  (if (pred head)
-	      (let ((new-tail (recur tail)))	; Replicate the RECUR call so
-		(if (eq? tail new-tail) lis
-		    (cons head new-tail)))
-	      (recur tail))))))			; this one can be a tail call.
-
-
-;;; Another version that shares longest tail.
-;(define (filter pred lis)
-;  (receive (ans no-del?)
-;      ;; (recur l) returns L with (pred x) values filtered.
-;      ;; It also returns a flag NO-DEL? if the returned value
-;      ;; is EQ? to L, i.e. if it didn't have to delete anything.
-;      (let recur ((l l))
-;	(if (null-list? l) (values l #t)
-;	    (let ((x  (car l))
-;		  (tl (cdr l)))
-;	      (if (pred x)
-;		  (receive (ans no-del?) (recur tl)
-;		    (if no-del?
-;			(values l #t)
-;			(values (cons x ans) #f)))
-;		  (receive (ans no-del?) (recur tl) ; Delete X.
-;		    (values ans #f))))))
-;    ans))
-
-
-
-;(define (filter! pred lis)			; Things are much simpler
-;  (let recur ((lis lis))			; if you are willing to
-;    (if (pair? lis)				; push N stack frames & do N
-;        (cond ((pred (car lis))		; SET-CDR! writes, where N is
-;               (set-cdr! lis (recur (cdr lis))); the length of the answer.
-;               lis)				
-;              (else (recur (cdr lis))))
-;        lis)))
-
-
-;;; This implementation of FILTER!
-;;; - doesn't cons, and uses no stack;
-;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are 
-;;;   usually expensive on modern machines, and can be extremely expensive on 
-;;;   modern Schemes (e.g., ones that have generational GC's).
-;;; It just zips down contiguous runs of in and out elts in LIS doing the 
-;;; minimal number of SET-CDR!s to splice the tail of one run of ins to the 
-;;; beginning of the next.
-
-(define (filter! pred lis)
-;  (check-arg procedure? pred filter!)
-  (let lp ((ans lis))
-    (cond ((null-list? ans)       ans)			; Scan looking for
-	  ((not (pred (car ans))) (lp (cdr ans)))	; first cons of result.
-
-	  ;; ANS is the eventual answer.
-	  ;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED.
-	  ;;          Scan over a contiguous segment of the list that
-	  ;;          satisfies PRED.
-	  ;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous
-	  ;;           segment of the list that *doesn't* satisfy PRED.
-	  ;;           When the segment ends, patch in a link from PREV
-	  ;;           to the start of the next good segment, and jump to
-	  ;;           SCAN-IN.
-	  (else (letrec ((scan-in (lambda (prev lis)
-				    (if (pair? lis)
-					(if (pred (car lis))
-					    (scan-in lis (cdr lis))
-					    (scan-out prev (cdr lis))))))
-			 (scan-out (lambda (prev lis)
-				     (let lp ((lis lis))
-				       (if (pair? lis)
-					   (if (pred (car lis))
-					       (begin (set-cdr! prev lis)
-						      (scan-in lis (cdr lis)))
-					       (lp (cdr lis)))
-					   (set-cdr! prev lis))))))
-		  (scan-in ans (cdr ans))
-		  ans)))))
-
-
-;;; This version does not share common tails like the reference impl does.
-;;; Kindly suggested by Joerg Wittenberger on 20-05-2013.
-
-(define (partition pred lst)
-;  (check-arg procedure? pred partition)
-  (let ((t (cons #f '()))
-	(f (cons #f '())))
-    (let ((tl t) (fl f))
-      (do ((lst lst (cdr lst)))
-	  ((null? lst) (values (cdr t) (cdr f)))
-	(let ((elt (car lst)))
-	  (if (pred elt)
-	      (let ((p (cons elt (cdr tl))))
-		(set-cdr! tl p)
-		(set! tl p))
-	      (let ((p (cons elt (cdr fl))))
-		(set-cdr! fl p)
-		(set! fl p))))))))
-
-
-;(define (partition! pred lis)			; Things are much simpler
-;  (let recur ((lis lis))			; if you are willing to
-;    (if (null-list? lis) (values lis lis)	; push N stack frames & do N
-;        (let ((elt (car lis)))			; SET-CDR! writes, where N is
-;          (receive (in out) (recur (cdr lis))	; the length of LIS.
-;            (cond ((pred elt)
-;                   (set-cdr! lis in)
-;                   (values lis out))
-;                  (else (set-cdr! lis out)
-;                        (values in lis))))))))
-
-
-;;; This implementation of PARTITION!
-;;; - doesn't cons, and uses no stack;
-;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
-;;;   usually expensive on modern machines, and can be extremely expensive on 
-;;;   modern Schemes (e.g., ones that have generational GC's).
-;;; It just zips down contiguous runs of in and out elts in LIS doing the
-;;; minimal number of SET-CDR!s to splice these runs together into the result 
-;;; lists.
-
-(define (partition! pred lis)
-;  (check-arg procedure? pred partition!)
-  (if (null-list? lis) (values lis lis)
-
-      ;; This pair of loops zips down contiguous in & out runs of the
-      ;; list, splicing the runs together. The invariants are
-      ;;   SCAN-IN:  (cdr in-prev)  = LIS.
-      ;;   SCAN-OUT: (cdr out-prev) = LIS.
-      (letrec ((scan-in (lambda (in-prev out-prev lis)
-			  (let lp ((in-prev in-prev) (lis lis))
-			    (if (pair? lis)
-				(if (pred (car lis))
-				    (lp lis (cdr lis))
-				    (begin (set-cdr! out-prev lis)
-					   (scan-out in-prev lis (cdr lis))))
-				(set-cdr! out-prev lis))))) ; Done.
-
-	       (scan-out (lambda (in-prev out-prev lis)
-			   (let lp ((out-prev out-prev) (lis lis))
-			     (if (pair? lis)
-				 (if (pred (car lis))
-				     (begin (set-cdr! in-prev lis)
-					    (scan-in lis out-prev (cdr lis)))
-				     (lp lis (cdr lis)))
-				 (set-cdr! in-prev lis)))))) ; Done.
-
-	;; Crank up the scan&splice loops.
-	(if (pred (car lis))
-	    ;; LIS begins in-list. Search for out-list's first pair.
-	    (let lp ((prev-l lis) (l (cdr lis)))
-	      (cond ((not (pair? l)) (values lis l))
-		    ((pred (car l)) (lp l (cdr l)))
-		    (else (scan-out prev-l l (cdr l))
-			  (values lis l))))	; Done.
-
-	    ;; LIS begins out-list. Search for in-list's first pair.
-	    (let lp ((prev-l lis) (l (cdr lis)))
-	      (cond ((not (pair? l)) (values l lis))
-		    ((pred (car l))
-		     (scan-in l prev-l (cdr l))
-		     (values l lis))		; Done.
-		    (else (lp l (cdr l)))))))))
-
-
-;;; Inline us, please.
-(define (remove  pred l) (filter  (lambda (x) (not (pred x))) l))
-(define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
-
-
-
-;;; Here's the taxonomy for the DELETE/ASSOC/MEMBER functions.
-;;; (I don't actually think these are the world's most important
-;;; functions -- the procedural FILTER/REMOVE/FIND/FIND-TAIL variants
-;;; are far more general.)
-;;;
-;;; Function			Action
-;;; ---------------------------------------------------------------------------
-;;; remove pred lis		Delete by general predicate
-;;; delete x lis [=]		Delete by element comparison
-;;;					     
-;;; find pred lis		Search by general predicate
-;;; find-tail pred lis		Search by general predicate
-;;; member x lis [=]		Search by element comparison
-;;;
-;;; assoc key lis [=]		Search alist by key comparison
-;;; alist-delete key alist [=]	Alist-delete by key comparison
-
-(define (delete x lis . maybe-=) 
-  (let ((= (optional maybe-= equal?)))
-    (filter (lambda (y) (not (= x y))) lis)))
-
-(define (delete! x lis . maybe-=)
-  (let ((= (optional maybe-= equal?)))
-    (filter! (lambda (y) (not (= x y))) lis)))
-
-;;; Extended from R4RS to take an optional comparison argument.
-(define (member x lis . maybe-=)
-  (let ((= (optional maybe-= equal?)))
-    (find-tail (lambda (y) (= x y)) lis)))
-
-;;; R4RS, hence we don't bother to define.
-;;; The MEMBER and then FIND-TAIL call should definitely
-;;; be inlined for MEMQ & MEMV.
-;(define (memq    x lis) (member x lis eq?))
-;(define (memv    x lis) (member x lis eqv?))
-
-
-;;; right-duplicate deletion
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;;; delete-duplicates delete-duplicates!
-;;;
-;;; Beware -- these are N^2 algorithms. To efficiently remove duplicates
-;;; in long lists, sort the list to bring duplicates together, then use a 
-;;; linear-time algorithm to kill the dups. Or use an algorithm based on
-;;; element-marking. The former gives you O(n lg n), the latter is linear.
-
-(define (delete-duplicates lis . maybe-=)
-  (let ((elt= (optional maybe-= equal?)))
-;    (check-arg procedure? elt= delete-duplicates)
-    (let recur ((lis lis))
-      (if (null-list? lis) lis
-	  (let* ((x (car lis))
-		 (tail (cdr lis))
-		 (new-tail (recur (delete x tail elt=))))
-	    (if (eq? tail new-tail) lis (cons x new-tail)))))))
-
-(define (delete-duplicates! lis . maybe-=)
-  (let ((elt= (optional maybe-= equal?)))
-;    (check-arg procedure? elt= delete-duplicates!)
-    (let recur ((lis lis))
-      (if (null-list? lis) lis
-	  (let* ((x (car lis))
-		 (tail (cdr lis))
-		 (new-tail (recur (delete! x tail elt=))))
-	    (if (eq? tail new-tail) lis (cons x new-tail)))))))
-
-
-;;; alist stuff
-;;;;;;;;;;;;;;;
-
-;;; Extended from R4RS to take an optional comparison argument.
-(define (assoc x lis . maybe-=)
-  (let ((= (optional maybe-= equal?)))
-    (find (lambda (entry) (= x (car entry))) lis)))
-
-(define (alist-cons key datum alist) (cons (cons key datum) alist))
-
-(define (alist-copy alist)
-  (##sys#map (lambda (elt) (cons (car elt) (cdr elt)))
-       alist))
-
-(define (alist-delete key alist . maybe-=)
-  (let ((= (optional maybe-= equal?)))
-    (filter (lambda (elt) (not (= key (car elt)))) alist)))
-
-(define (alist-delete! key alist . maybe-=)
-  (let ((= (optional maybe-= equal?)))
-    (filter! (lambda (elt) (not (= key (car elt)))) alist)))
-
-
-;;; find find-tail take-while drop-while span break any every list-index
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-(define (find pred list)
-  (cond ((find-tail pred list) => car)
-	(else #f)))
-
-(define (find-tail pred list)
-;  (check-arg procedure? pred find-tail)
-  (let lp ((list list))
-    (and (not (null-list? list))
-	 (if (pred (car list)) list
-	     (lp (cdr list))))))
-
-(define (take-while pred lis)
-;  (check-arg procedure? pred take-while)
-  (let recur ((lis lis))
-    (if (null-list? lis) '()
-	(let ((x (car lis)))
-	  (if (pred x)
-	      (cons x (recur (cdr lis)))
-	      '())))))
-
-(define (drop-while pred lis)
-;  (check-arg procedure? pred drop-while)
-  (let lp ((lis lis))
-    (if (null-list? lis) '()
-	(if (pred (car lis))
-	    (lp (cdr lis))
-	    lis))))
-
-(define (take-while! pred lis)
-;  (check-arg procedure? pred take-while!)
-  (if (or (null-list? lis) (not (pred (car lis)))) '()
-      (begin (let lp ((prev lis) (rest (cdr lis)))
-	       (if (pair? rest)
-		   (let ((x (car rest)))
-		     (if (pred x) (lp rest (cdr rest))
-			 (set-cdr! prev '())))))
-	     lis)))
-
-(define (span pred lis)
-;  (check-arg procedure? pred span)
-  (let recur ((lis lis))
-    (if (null-list? lis) (values '() '())
-	(let ((x (car lis)))
-	  (if (pred x)
-	      (receive (prefix suffix) (recur (cdr lis))
-		(values (cons x prefix) suffix))
-	      (values '() lis))))))
-
-(define (span! pred lis)
-;  (check-arg procedure? pred span!)
-  (if (or (null-list? lis) (not (pred (car lis)))) (values '() lis)
-      (let ((suffix (let lp ((prev lis) (rest (cdr lis)))
-		      (if (null-list? rest) rest
-			  (let ((x (car rest)))
-			    (if (pred x) (lp rest (cdr rest))
-				(begin (set-cdr! prev '())
-				       rest)))))))
-	(values lis suffix))))
-  
-
-(define (break  pred lis) (span  (lambda (x) (not (pred x))) lis))
-(define (break! pred lis) (span! (lambda (x) (not (pred x))) lis))
-
-(define (any pred lis1 . lists)
-;  (check-arg procedure? pred any)
-  (if (pair? lists)
-
-      ;; N-ary case
-      (receive (heads tails) (##srfi1#cars+cdrs (cons lis1 lists))
-	(and (pair? heads)
-	     (let lp ((heads heads) (tails tails))
-	       (receive (next-heads next-tails) (##srfi1#cars+cdrs tails)
-		 (if (pair? next-heads)
-		     (or (apply pred heads) (lp next-heads next-tails))
-		     (apply pred heads)))))) ; Last PRED app is tail call.
-
-      ;; Fast path
-      (and (not (null-list? lis1))
-	   (let lp ((head (car lis1)) (tail (cdr lis1)))
-	     (if (null-list? tail)
-		 (pred head)		; Last PRED app is tail call.
-		 (or (pred head) (lp (car tail) (cdr tail))))))))
-
-
-;(define (every pred list)              ; Simple definition.
-;  (let lp ((list list))                ; Doesn't return the last PRED value.
-;    (or (not (pair? list))
-;        (and (pred (car list))
-;             (lp (cdr list))))))
-
-(define (every pred lis1 . lists)
-;  (check-arg procedure? pred every)
-  (if (pair? lists)
-
-      ;; N-ary case
-      (receive (heads tails) (##srfi1#cars+cdrs (cons lis1 lists))
-	(or (not (pair? heads))
-	    (let lp ((heads heads) (tails tails))
-	      (receive (next-heads next-tails) (##srfi1#cars+cdrs tails)
-		(if (pair? next-heads)
-		    (and (apply pred heads) (lp next-heads next-tails))
-		    (apply pred heads)))))) ; Last PRED app is tail call.
-
-      ;; Fast path
-      (or (null-list? lis1)
-	  (let lp ((head (car lis1))  (tail (cdr lis1)))
-	    (if (null-list? tail)
-		(pred head)	; Last PRED app is tail call.
-		(and (pred head) (lp (car tail) (cdr tail))))))))
-
-(define (list-index pred lis1 . lists)
-;  (check-arg procedure? pred list-index)
-  (if (pair? lists)
-
-      ;; N-ary case
-      (let lp ((lists (cons lis1 lists)) (n 0))
-	(receive (heads tails) (##srfi1#cars+cdrs lists)
-	  (and (pair? heads)
-	       (if (apply pred heads) n
-		   (lp tails (fx+ n 1))))))
-
-      ;; Fast path
-      (let lp ((lis lis1) (n 0))
-	(and (not (null-list? lis))
-	     (if (pred (car lis)) n (lp (cdr lis) (fx+ n 1)))))))
-
-;;; Reverse
-;;;;;;;;;;;
-
-;R4RS, so not defined here.
-;(define (reverse lis) (fold cons '() lis))
-				      
-;(define (reverse! lis)
-;  (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair) '() lis))
-
-(define (reverse! lis)
-  (let lp ((lis lis) (ans '()))
-    (if (null-list? lis) ans
-        (let ((tail (cdr lis)))
-          (set-cdr! lis ans)
-          (lp tail lis)))))
-
-;;; Lists-as-sets
-;;;;;;;;;;;;;;;;;
-
-;;; This is carefully tuned code; do not modify casually.
-;;; - It is careful to share storage when possible;
-;;; - Side-effecting code tries not to perform redundant writes.
-;;; - It tries to avoid linear-time scans in special cases where constant-time
-;;;   computations can be performed.
-;;; - It relies on similar properties from the other list-lib procs it calls.
-;;;   For example, it uses the fact that the implementations of MEMBER and
-;;;   FILTER in this source code share longest common tails between args
-;;;   and results to get structure sharing in the lset procedures.
-
-(define (##srfi1#lset2<= = lis1 lis2) (every (lambda (x) (member x lis2 =)) lis1))
-
-(define (lset<= = . lists)
-;  (check-arg procedure? = lset<=)
-  (##sys#check-closure = 'lset<=)
-  (or (not (pair? lists)) ; 0-ary case
-      (let lp ((s1 (car lists)) (rest (cdr lists)))
-	(or (not (pair? rest))
-	    (let ((s2 (car rest))  (rest (cdr rest)))
-	      (and (or (eq? s2 s1)	; Fast path
-		       (##srfi1#lset2<= = s1 s2)) ; Real test
-		   (lp s2 rest)))))))
-
-(define (lset= = . lists)
-;  (check-arg procedure? = lset=)
-  (##sys#check-closure = 'lset=)
-  (or (not (pair? lists)) ; 0-ary case
-      (let lp ((s1 (car lists)) (rest (cdr lists)))
-	(or (not (pair? rest))
-	    (let ((s2   (car rest))
-		  (rest (cdr rest)))
-	      (and (or (eq? s1 s2)	; Fast path
-		       (and (##srfi1#lset2<= = s1 s2) (##srfi1#lset2<= = s2 s1))) ; Real test
-		   (lp s2 rest)))))))
-
-
-(define (lset-adjoin = lis . elts)
-;  (check-arg procedure? = lset-adjoin)
-  (##sys#check-closure = 'lset-adjoin)
-  (fold (lambda (elt ans) (if (member elt ans =) ans (cons elt ans)))
-	lis elts))
-
-
-(define (lset-union = . lists)
-;  (check-arg procedure? = lset-union)
-  (##sys#check-closure = 'lset-union)
-  (reduce (lambda (lis ans)		; Compute ANS + LIS.
-	    (cond ((null? lis) ans)	; Don't copy any lists
-		  ((null? ans) lis) 	; if we don't have to.
-		  ((eq? lis ans) ans)
-		  (else
-		   (fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans)
-					       ans
-					       (cons elt ans)))
-			 ans lis))))
-	  '() lists))
-
-(define (lset-union! = . lists)
-;  (check-arg procedure? = lset-union!)
-  (##sys#check-closure = 'lset-union!)
-  (reduce (lambda (lis ans)		; Splice new elts of LIS onto the front of ANS.
-	    (cond ((null? lis) ans)	; Don't copy any lists
-		  ((null? ans) lis) 	; if we don't have to.
-		  ((eq? lis ans) ans)
-		  (else
-		   (pair-fold (lambda (pair ans)
-				(let ((elt (car pair)))
-				  (if (any (lambda (x) (= x elt)) ans)
-				      ans
-				      (begin (set-cdr! pair ans) pair))))
-			      ans lis))))
-	  '() lists))
-
-
-(define (lset-intersection = lis1 . lists)
-;  (check-arg procedure? = lset-intersection)
-  (##sys#check-closure = 'lset-intersection)
-  (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
-    (cond ((any null-list? lists) '())		; Short cut
-	  ((null? lists)          lis1)		; Short cut
-	  (else (filter (lambda (x)
-			  (every (lambda (lis) (member x lis =)) lists))
-			lis1)))))
-
-(define (lset-intersection! = lis1 . lists)
-;  (check-arg procedure? = lset-intersection!)
-  (##sys#check-closure = 'lset-intersection!)
-  (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
-    (cond ((any null-list? lists) '())		; Short cut
-	  ((null? lists)          lis1)		; Short cut
-	  (else (filter! (lambda (x)
-			   (every (lambda (lis) (member x lis =)) lists))
-			 lis1)))))
-
-
-(define (lset-difference = lis1 . lists)
-;  (check-arg procedure? = lset-difference)
-  (##sys#check-closure = 'lset-difference)
-  (let ((lists (filter pair? lists)))	; Throw out empty lists.
-    (cond ((null? lists)     lis1)	; Short cut
-	  ((memq lis1 lists) '())	; Short cut
-	  (else (filter (lambda (x)
-			  (every (lambda (lis) (not (member x lis =)))
-				 lists))
-			lis1)))))
-
-(define (lset-difference! = lis1 . lists)
-;  (check-arg procedure? = lset-difference!)
-  (##sys#check-closure = 'lset-difference!)
-  (let ((lists (filter pair? lists)))	; Throw out empty lists.
-    (cond ((null? lists)     lis1)	; Short cut
-	  ((memq lis1 lists) '())	; Short cut
-	  (else (filter! (lambda (x)
-			   (every (lambda (lis) (not (member x lis =)))
-				  lists))
-			 lis1)))))
-
-
-(define (lset-xor = . lists)
-;  (check-arg procedure? = lset-xor)
-  (##sys#check-closure = 'lset-xor)
-  (reduce (lambda (b a)			; Compute A xor B:
-	    ;; Note that this code relies on the constant-time
-	    ;; short-cuts provided by LSET-DIFF+INTERSECTION,
-	    ;; LSET-DIFFERENCE & APPEND to provide constant-time short
-	    ;; cuts for the cases A = (), B = (), and A eq? B. It takes
-	    ;; a careful case analysis to see it, but it's carefully
-	    ;; built in.
-
-	    ;; Compute a-b and a^b, then compute b-(a^b) and
-	    ;; cons it onto the front of a-b.
-	    (receive (a-b a-int-b)   (lset-diff+intersection = a b)
-	      (cond ((null? a-b)     (lset-difference = b a))
-		    ((null? a-int-b) (append b a))
-		    (else (fold (lambda (xb ans)
-				  (if (member xb a-int-b =) ans (cons xb ans)))
-				a-b
-				b)))))
-	  '() lists))
-
-
-(define (lset-xor! = . lists)
-;  (check-arg procedure? = lset-xor!)
-  (##sys#check-closure = 'lset-xor!)
-  (reduce (lambda (b a)			; Compute A xor B:
-	    ;; Note that this code relies on the constant-time
-	    ;; short-cuts provided by LSET-DIFF+INTERSECTION,
-	    ;; LSET-DIFFERENCE & APPEND to provide constant-time short
-	    ;; cuts for the cases A = (), B = (), and A eq? B. It takes
-	    ;; a careful case analysis to see it, but it's carefully
-	    ;; built in.
-
-	    ;; Compute a-b and a^b, then compute b-(a^b) and
-	    ;; cons it onto the front of a-b.
-	    (receive (a-b a-int-b)   (lset-diff+intersection! = a b)
-	      (cond ((null? a-b)     (lset-difference! = b a))
-		    ((null? a-int-b) (append! b a))
-		    (else (pair-fold (lambda (b-pair ans)
-				       (if (member (car b-pair) a-int-b =) ans
-					   (begin (set-cdr! b-pair ans) b-pair)))
-				     a-b
-				     b)))))
-	  '() lists))
-
-
-(define (lset-diff+intersection = lis1 . lists)
-;  (check-arg procedure? = lset-diff+intersection)
-  (##sys#check-closure = 'lset-diff+intersection)
-  (cond ((every null-list? lists) (values lis1 '()))	; Short cut
-	((memq lis1 lists)        (values '() lis1))	; Short cut
-	(else (partition (lambda (elt)
-			   (not (any (lambda (lis) (member elt lis =))
-				     lists)))
-			 lis1))))
-
-(define (lset-diff+intersection! = lis1 . lists)
-;  (check-arg procedure? = lset-diff+intersection!)
-  (##sys#check-closure = 'lset-diff+intersection!)
-  (cond ((every null-list? lists) (values lis1 '()))	; Short cut
-	((memq lis1 lists)        (values '() lis1))	; Short cut
-	(else (partition! (lambda (elt)
-			    (not (any (lambda (lis) (member elt lis =))
-				      lists)))
-			  lis1))))
Trap