~ chicken-core (chicken-5) 404627f287754ff03ae16a2aa6cb9b0cfa203632
commit 404627f287754ff03ae16a2aa6cb9b0cfa203632 Author: Peter Bex <peter@more-magic.net> AuthorDate: Sat Mar 28 19:28:56 2015 +0100 Commit: Peter Bex <peter@more-magic.net> CommitDate: Sun May 31 14:55:24 2015 +0200 Make generic dyadic * inlineable! Restore old-style compiler specialization rewrites for dyadic *. diff --git a/c-platform.scm b/c-platform.scm index b6091cbe..b9b5b05a 100644 --- a/c-platform.scm +++ b/c-platform.scm @@ -640,6 +640,7 @@ (rewrite '+ 16 2 "C_s_a_i_plus" #t 36) (rewrite '- 16 2 "C_s_a_i_minus" #t 36) +(rewrite '* 16 2 "C_s_a_i_times" #t 40) (rewrite '= 17 2 "C_i_nequalp") (rewrite '> 17 2 "C_i_greaterp") diff --git a/chicken.h b/chicken.h index 241cda78..52e802f1 100644 --- a/chicken.h +++ b/chicken.h @@ -1958,9 +1958,7 @@ C_fctexport void C_ccall C_values(C_word c, C_word closure, C_word k, ...) C_nor C_fctexport void C_ccall C_apply_values(C_word c, C_word closure, C_word k, C_word lst) C_noret; C_fctexport void C_ccall C_call_with_values(C_word c, C_word closure, C_word k, C_word thunk, C_word kont) C_noret; C_fctexport void C_ccall C_u_call_with_values(C_word c, C_word closure, C_word k, C_word thunk, C_word kont) C_noret; -/* XXX TODO OBSOLETE: This can be removed after recompiling c-platform.scm */ C_fctexport void C_ccall C_times(C_word c, C_word closure, C_word k, ...) C_noret; -C_fctexport void C_ccall C_2_basic_times(C_word c, C_word self, C_word k, C_word x, C_word y) C_noret; C_fctexport void C_ccall C_plus(C_word c, C_word closure, C_word k, ...) C_noret; C_fctexport void C_ccall C_minus(C_word c, C_word closure, C_word k, C_word n1, ...) C_noret; /* XXX TODO OBSOLETE: This can be removed after recompiling c-platform.scm */ @@ -2186,6 +2184,7 @@ C_fctexport C_word C_fcall C_s_a_u_i_integer_negate(C_word **ptr, C_word n, C_wo C_fctexport C_word C_fcall C_s_a_u_i_integer_minus(C_word **ptr, C_word n, C_word x, C_word y) C_regparm; C_fctexport C_word C_fcall C_s_a_i_plus(C_word **ptr, C_word n, C_word x, C_word y) C_regparm; C_fctexport C_word C_fcall C_s_a_u_i_integer_plus(C_word **ptr, C_word n, C_word x, C_word y) C_regparm; +C_fctexport C_word C_fcall C_s_a_i_times(C_word **ptr, C_word n, C_word x, C_word y) C_regparm; C_fctexport C_word C_fcall C_s_a_u_i_integer_times(C_word **ptr, C_word n, C_word x, C_word y) C_regparm; C_fctexport C_word C_fcall C_s_a_i_arithmetic_shift(C_word **ptr, C_word n, C_word x, C_word y) C_regparm; C_fctexport C_word C_fcall C_s_a_u_i_integer_gcd(C_word **ptr, C_word n, C_word x, C_word y) C_regparm; diff --git a/library.scm b/library.scm index 4fd9045a..27ddfdd6 100644 --- a/library.scm +++ b/library.scm @@ -995,8 +995,8 @@ EOF (##sys#check-real phi 'make-polar) (let ((fphi (exact->inexact phi))) (make-complex - (##sys#*-2 r (##core#inline_allocate ("C_a_i_cos" 4) fphi)) - (##sys#*-2 r (##core#inline_allocate ("C_a_i_sin" 4) fphi))))) + (* r (##core#inline_allocate ("C_a_i_cos" 4) fphi)) + (* r (##core#inline_allocate ("C_a_i_sin" 4) fphi))))) (define (real-part x) (cond ((cplxnum? x) (%cplxnum-real x)) @@ -1019,7 +1019,7 @@ EOF (cond ((cplxnum? x) (let ((r (%cplxnum-real x)) (i (%cplxnum-imag x)) ) - (sqrt (+ (##sys#*-2 r r) (##sys#*-2 i i))) )) + (sqrt (+ (* r r) (* i i))) )) ((number? x) (abs x)) (else (##sys#error-bad-number x 'magnitude)))) @@ -1076,14 +1076,14 @@ EOF (define (deliver y d) (let* ((q (##sys#integer-power 2 (float-fraction-length y))) - (scaled-y (##sys#*-2 y (exact->inexact q)))) + (scaled-y (* y (exact->inexact q)))) (if (finite? scaled-y) ; Shouldn't this always be true? (##sys#/-2 (##sys#/-2 ((##core#primitive "C_u_flo_to_int") scaled-y) q) d) (##sys#error-bad-inexact x 'inexact->exact)))) (if (and (fp< x 1.0) ; Watch out for denormalized numbers (fp> x -1.0)) ; XXX: Needs a test, it seems pointless - (deliver (##sys#*-2 x (expt 2.0 flonum-precision)) + (deliver (* x (expt 2.0 flonum-precision)) ;; Can be bignum (is on 32-bit), so must wait until after init. ;; We shouldn't need to calculate this every single time, tho.. (##sys#integer-power 2 flonum-precision)) @@ -1112,8 +1112,6 @@ EOF (define (abs x) (##core#inline_allocate ("C_s_a_i_abs" 10) x)) -(define ##sys#*-2 (##core#primitive "C_2_basic_times")) - (define (* . args) (if (null? args) 1 @@ -1122,45 +1120,14 @@ EOF (if (null? args) (if (number? x) x (##sys#error-bad-number x '*)) (let loop ((args (##sys#slot args 1)) - (x (##sys#*-2 x (##sys#slot args 0)))) + (x (##core#inline_allocate + ("C_s_a_i_times" 40) x (##sys#slot args 0)))) (if (null? args) x (loop (##sys#slot args 1) - (##sys#*-2 x (##sys#slot args 0))) ) ) ) ) ) ) - -(define (##sys#extended-times x y) - (define (nonrat*rat x y) - ;; a/b * c/d = a*c / b*d [with b = 1] - ;; = ((a / g) * c) / (d / g) - ;; With g = gcd(a, d) and a = x [Knuth, 4.5.1] - (let* ((d (%ratnum-denominator y)) - (g (##sys#internal-gcd '* x d))) - (ratnum (##sys#*-2 (quotient x g) (%ratnum-numerator y)) - (quotient d g)))) - - (cond ((or (cplxnum? x) (cplxnum? y)) - (let* ((a (real-part x)) (b (imag-part x)) - (c (real-part y)) (d (imag-part y)) - (r (- (##sys#*-2 a c) (##sys#*-2 b d))) - (i (+ (##sys#*-2 a d) (##sys#*-2 b c))) ) - (make-complex r i) ) ) - ((or (##core#inline "C_i_flonump" x) (##core#inline "C_i_flonump" y)) - ;; This may be incorrect when one is a ratnum consisting of bignums - (fp* (exact->inexact y) (exact->inexact x))) ; loc? - ((ratnum? x) - (if (ratnum? y) - ;; a/b * c/d = a*c / b*d [generic] - ;; = ((a / g1) * (c / g2)) / ((b / g2) * (d / g1)) - ;; With g1 = gcd(a, d) and g2 = gcd(b, c) [Knuth, 4.5.1] - (let* ((a (%ratnum-numerator x)) (b (%ratnum-denominator x)) - (c (%ratnum-numerator y)) (d (%ratnum-denominator y)) - (g1 (##sys#integer-gcd a d)) - (g2 (##sys#integer-gcd b c))) - (ratnum (##sys#*-2 (quotient a g1) (quotient c g2)) - (##sys#*-2 (quotient b g2) (quotient d g1)))) - (nonrat*rat y x))) - ((ratnum? y) (nonrat*rat x y)) - (else (##sys#error-bad-number x '*)))) + (##core#inline_allocate + ("C_s_a_i_times" 40) + x (##sys#slot args 0))) ) ) ) ) ) ) (define (/ arg1 . args) (if (null? args) @@ -1182,9 +1149,9 @@ EOF ((or (cplxnum? x) (cplxnum? y)) (let* ((a (real-part x)) (b (imag-part x)) (c (real-part y)) (d (imag-part y)) - (r (+ (##sys#*-2 c c) (##sys#*-2 d d))) - (x (##sys#/-2 (+ (##sys#*-2 a c) (##sys#*-2 b d)) r)) - (y (##sys#/-2 (- (##sys#*-2 b c) (##sys#*-2 a d)) r)) ) + (r (+ (* c c) (* d d))) + (x (##sys#/-2 (+ (* a c) (* b d)) r)) + (y (##sys#/-2 (- (* b c) (* a d)) r)) ) (make-complex x y) )) ((or (##core#inline "C_i_flonump" x) (##core#inline "C_i_flonump" y)) ;; This may be incorrect when one is a ratnum consisting of bignums @@ -1198,15 +1165,15 @@ EOF (c (%ratnum-numerator y)) (d (%ratnum-denominator y)) (g1 (##sys#integer-gcd a c)) (g2 (##sys#integer-gcd b d))) - (ratnum (##sys#*-2 (quotient a g1) (quotient d g2)) - (##sys#*-2 (quotient b g2) (quotient c g1)))) + (ratnum (* (quotient a g1) (quotient d g2)) + (* (quotient b g2) (quotient c g1)))) ;; a/b / c/d = a*d / b*c [with d = 1] ;; = ((a / g) * sign(a)) / abs(b * (c / g)) ;; With g = gcd(a, c) and c = y [Knuth, 4.5.1 ex. 4] (let* ((a (%ratnum-numerator x)) (g (##sys#internal-gcd '/ a y)) (num (quotient a g)) - (denom (##sys#*-2 (%ratnum-denominator x) (quotient y g)))) + (denom (* (%ratnum-denominator x) (quotient y g)))) (if (##core#inline "C_i_flonump" denom) (##sys#/-2 num denom) (ratnum num denom))))) @@ -1216,7 +1183,7 @@ EOF ;; With g1 = gcd(a, c) and a = x [Knuth, 4.5.1 ex. 4] (let* ((c (%ratnum-numerator y)) (g (##sys#internal-gcd '/ x c)) - (num (##sys#*-2 (quotient x g) (%ratnum-denominator y))) + (num (* (quotient x g) (%ratnum-denominator y))) (denom (quotient c g))) (if (##core#inline "C_i_flonump" denom) (##sys#/-2 num denom) @@ -1258,7 +1225,7 @@ EOF (values (- (arithmetic-shift 1 base*n) 1) ; B^n-1 (+ (- a12 (arithmetic-shift b1 base*n)) b1)))) (let ((r1a3 (+ (arithmetic-shift r1 (digit-bits n)) a3))) - (let lp ((r^ (- r1a3 (##sys#*-2 q^ b2))) + (let lp ((r^ (- r1a3 (* q^ b2))) (q^ q^)) (if (negative? r^) (lp (+ r^ b) (- q^ 1)) @@ -1365,7 +1332,7 @@ EOF ((= fx fy) (let ((rat (sr (##sys#/-2 1 (- y fy)) (##sys#/-2 1 (- x fx))))) - (list (+ (cadr rat) (##sys#*-2 fx (car rat))) + (list (+ (cadr rat) (* fx (car rat))) (car rat)))) (else (list (+ 1 fx) 1))))) (cond ((< y x) (find-ratio-between y x)) @@ -1434,14 +1401,12 @@ EOF (define (exp n) (##sys#check-number n 'exp) (if (cplxnum? n) - (##sys#*-2 (##core#inline_allocate ("C_a_i_exp" 4) - (exact->inexact (%cplxnum-real n))) - (let ((p (%cplxnum-imag n))) - (make-complex - (##core#inline_allocate - ("C_a_i_cos" 4) (exact->inexact p)) - (##core#inline_allocate - ("C_a_i_sin" 4) (exact->inexact p)) ) ) ) + (* (##core#inline_allocate ("C_a_i_exp" 4) + (exact->inexact (%cplxnum-real n))) + (let ((p (%cplxnum-imag n))) + (make-complex + (##core#inline_allocate ("C_a_i_cos" 4) (exact->inexact p)) + (##core#inline_allocate ("C_a_i_sin" 4) (exact->inexact p)) ) ) ) (##core#inline_allocate ("C_a_i_flonum_exp" 4) (exact->inexact n)))) (define (##sys#log-1 x) ; log_e(x) @@ -1451,7 +1416,7 @@ EOF ;; avoid calling inexact->exact on X here (to avoid overflow?) ((or (cplxnum? x) (negative? x)) ; General case (+ (##sys#log-1 (magnitude x)) - (##sys#*-2 (make-complex 0 1) (angle x)))) + (* (make-complex 0 1) (angle x)))) (else ; Real number case (< already ensured the argument type is a number) (##core#inline_allocate ("C_a_i_log" 4) (exact->inexact x))))) @@ -1467,14 +1432,14 @@ EOF (define (sin n) (##sys#check-number n 'sin) (if (cplxnum? n) - (let ((in (##sys#*-2 %i n))) + (let ((in (* %i n))) (##sys#/-2 (- (exp in) (exp (- in))) %i2)) (##core#inline_allocate ("C_a_i_sin" 4) (exact->inexact n)))) (define (cos n) (##sys#check-number n 'cos) (if (cplxnum? n) - (let ((in (##sys#*-2 %i n))) + (let ((in (* %i n))) (##sys#/-2 (+ (exp in) (exp (- in))) 2) ) (##core#inline_allocate ("C_a_i_cos" 4) (exact->inexact n)))) @@ -1494,10 +1459,9 @@ EOF (##core#inline_allocate ("C_a_i_fix_to_flo" 4) n))) ;; General definition can return compnums - (else (##sys#*-2 %-i - (##sys#log-1 - (+ (##sys#*-2 %i n) - (##sys#sqrt/loc 'asin (- 1 (##sys#*-2 n n))))))))) + (else (* %-i (##sys#log-1 + (+ (* %i n) + (##sys#sqrt/loc 'asin (- 1 (* n n))))))))) ;; General case: ;; cos^{-1}(z) = 1/2\pi + i\ln(iz + \sqrt{1-z^2}) = 1/2\pi - sin^{-1}(z) = sin(1) - sin(z) @@ -1519,7 +1483,7 @@ EOF (cond ((cplxnum? n) (if b (##sys#error-bad-real n 'atan) - (let ((in (##sys#*-2 %i n))) + (let ((in (* %i n))) (##sys#/-2 (- (##sys#log-1 (+ 1 in)) (##sys#log-1 (- 1 in))) %i2)))) (b @@ -1553,7 +1517,7 @@ EOF (+ (arithmetic-shift r^ len/4) a1) (arithmetic-shift s^ 1))) ((s) (+ (arithmetic-shift s^ len/4) q)) - ((r) (+ (arithmetic-shift u len/4) (- a0 (##sys#*-2 q q))))) + ((r) (+ (arithmetic-shift u len/4) (- a0 (* q q))))) (if (negative? r) (values (- s 1) (- (+ r (arithmetic-shift s 1)) 1)) @@ -1569,7 +1533,7 @@ EOF (cond ((cplxnum? n) ; Must be checked before we call "negative?" (let ((p (##sys#/-2 (angle n) 2)) (m (##core#inline_allocate ("C_a_i_sqrt" 4) (magnitude n))) ) - (make-complex (##sys#*-2 m (cos p)) (##sys#*-2 m (sin p)) ) )) + (make-complex (* m (cos p)) (* m (sin p)) ) )) ((negative? n) (make-complex .0 (##core#inline_allocate ("C_a_i_sqrt" 4) (exact->inexact (- n))))) @@ -1610,44 +1574,44 @@ EOF (n-1 (- n 1))) (let lp ((g0 g0) (g1 (quotient - (+ (##sys#*-2 n-1 g0) + (+ (* n-1 g0) (quotient k (##sys#integer-power g0 n-1))) n))) (if (< g1 g0) (lp g1 (quotient - (+ (##sys#*-2 n-1 g1) + (+ (* n-1 g1) (quotient k (##sys#integer-power g1 n-1))) n)) (values g0 (- k (##sys#integer-power g0 n)))))))))) (define (##sys#integer-power base e) - (define (square x) (##sys#*-2 x x)) + (define (square x) (* x x)) (if (negative? e) (##sys#/-2 1 (##sys#integer-power base (integer-negate e))) (let lp ((res 1) (e2 e)) (cond ((eq? e2 0) res) ((even? e2) ; recursion is faster than iteration here - (##sys#*-2 res (square (lp 1 (arithmetic-shift e2 -1))))) + (* res (square (lp 1 (arithmetic-shift e2 -1))))) (else - (lp (##sys#*-2 res base) (- e2 1))))))) + (lp (* res base) (- e2 1))))))) (define (expt a b) (define (log-expt a b) - (exp (##sys#*-2 b (##sys#log-1 a)))) + (exp (* b (##sys#log-1 a)))) (define (slow-expt a b) (if (eq? 0 a) (##sys#signal-hook #:arithmetic-error 'expt "exponent of exact 0 with complex argument is undefined" a b) - (exp (##sys#*-2 b (##sys#log-1 a))))) + (exp (* b (##sys#log-1 a))))) (cond ((not (number? a)) (##sys#error-bad-number a 'expt)) ((not (number? b)) (##sys#error-bad-number b 'expt)) ((and (ratnum? a) (not (inexact? b))) ;; (n*d)^b = n^b * d^b = n^b * x^{-b} | x = 1/b ;; Hopefully faster than integer-power - (##sys#*-2 (expt (%ratnum-numerator a) b) - (expt (%ratnum-denominator a) (- b)))) + (* (expt (%ratnum-numerator a) b) + (expt (%ratnum-denominator a) (- b)))) ((ratnum? b) ;; x^{a/b} = (x^{1/b})^a (cond @@ -1728,7 +1692,7 @@ EOF (if (integer? head) (abs head) (##sys#error-bad-integer head 'lcm)) (let* ((n2 (##sys#slot next 0)) (gcd (##sys#internal-gcd 'lcm head n2))) - (loop (quotient (##sys#*-2 head n2) gcd) + (loop (quotient (* head n2) gcd) (##sys#slot next 1)) ) ) ) ) ) ;; This simple enough idea is from @@ -1774,7 +1738,7 @@ EOF ;; by Aubrey Jaffer. (define (mantexp->dbl mant point) (if (not (negative? point)) - (exact->inexact (##sys#*-2 mant (##sys#integer-power 10 point))) + (exact->inexact (* mant (##sys#integer-power 10 point))) (let* ((scl (##sys#integer-power 10 (abs point))) (bex (fx- (fx- (integer-length mant) (integer-length scl)) flonum-precision))) @@ -1784,17 +1748,17 @@ EOF (cond ((> (integer-length quo) flonum-precision) ;; Too many bits of quotient; readjust (set! bex (fx+ 1 bex)) - (set! quo (round-quotient num (##sys#*-2 scl 2))))) + (set! quo (round-quotient num (* scl 2))))) (ldexp (exact->inexact quo) bex)) ;; Fall back to exact calculation in extreme cases - (##sys#*-2 mant (##sys#integer-power 10 point)))))) + (* mant (##sys#integer-power 10 point)))))) (define ldexp (foreign-lambda double "ldexp" double int)) ;; Should we export this? (define (round-quotient n d) (let ((q (##sys#integer-quotient n d))) - (if ((if (even? q) > >=) (##sys#*-2 (abs (remainder n d)) 2) (abs d)) + (if ((if (even? q) > >=) (* (abs (remainder n d)) 2) (abs d)) (+ q (if (eqv? (negative? n) (negative? d)) 1 -1)) q))) @@ -1815,7 +1779,7 @@ EOF ((< e (fxneg +maximum-allowed-exponent+)) (and (eq? exactness 'i) +0.0)) ((eq? exactness 'i) (mantexp->dbl value e)) - (else (##sys#*-2 value (##sys#integer-power 10 e)))))) + (else (* value (##sys#integer-power 10 e)))))) (define (make-nan) ;; Return fresh NaNs, so eqv? returns #f on two read NaNs. This ;; is not mandated by the standard, but compatible with earlier diff --git a/runtime.c b/runtime.c index e01d26c4..65b92b0e 100644 --- a/runtime.c +++ b/runtime.c @@ -518,6 +518,9 @@ static C_word bignum_plus_unsigned(C_word **ptr, C_word x, C_word y, C_word negp static C_word rat_plusmin_integer(C_word **ptr, C_word rat, C_word i, integer_plusmin_op plusmin_op); static C_word integer_minus_rat(C_word **ptr, C_word i, C_word rat); static C_word rat_plusmin_rat(C_word **ptr, C_word x, C_word y, integer_plusmin_op plusmin_op); +static C_word rat_times_integer(C_word **ptr, C_word x, C_word y); +static C_word rat_times_rat(C_word **ptr, C_word x, C_word y); +static C_word cplx_times(C_word **ptr, C_word rx, C_word ix, C_word ry, C_word iy); static C_word bignum_minus_unsigned(C_word **ptr, C_word x, C_word y); static C_regparm void basic_divrem(C_word c, C_word self, C_word k, C_word x, C_word y, C_word return_r, C_word return_q) C_noret; static C_regparm void integer_divrem(C_word c, C_word self, C_word k, C_word x, C_word y, C_word return_q, C_word return_r) C_noret; @@ -586,7 +589,6 @@ static C_PTABLE_ENTRY *create_initial_ptable(); static void dload_2(void *dummy) C_noret; #endif - static void C_dbg(C_char *prefix, C_char *fstr, ...) { @@ -843,7 +845,7 @@ static C_PTABLE_ENTRY *create_initial_ptable() { /* IMPORTANT: hardcoded table size - this must match the number of C_pte calls + 1 (NULL terminator)! */ - C_PTABLE_ENTRY *pt = (C_PTABLE_ENTRY *)C_malloc(sizeof(C_PTABLE_ENTRY) * 72); + C_PTABLE_ENTRY *pt = (C_PTABLE_ENTRY *)C_malloc(sizeof(C_PTABLE_ENTRY) * 71); int i = 0; if(pt == NULL) @@ -867,7 +869,6 @@ static C_PTABLE_ENTRY *create_initial_ptable() C_pte(C_set_dlopen_flags); C_pte(C_become); C_pte(C_apply_values); - /* XXX TODO OBSOLETE: This can be removed after recompiling c-platform.scm */ C_pte(C_times); C_pte(C_minus); C_pte(C_plus); @@ -912,7 +913,6 @@ static C_PTABLE_ENTRY *create_initial_ptable() C_pte(C_flonum_to_string); /* IMPORTANT: have you read the comments at the start and the end of this function? */ C_pte(C_signum); - C_pte(C_2_basic_times); C_pte(C_basic_quotient); C_pte(C_basic_remainder); C_pte(C_basic_divrem); @@ -7382,60 +7382,342 @@ void C_ccall values_continuation(C_word c, C_word closure, C_word arg0, ...) C_do_apply(n - 2, kont, k); } +static C_word rat_times_integer(C_word **ptr, C_word rat, C_word i) +{ + C_word ab[C_SIZEOF_FIX_BIGNUM*7], *a = ab, + num, denom, d_big, gcd, gcd_big, i_big, tmp_r, a_div_g, size; -void C_ccall -C_2_basic_times(C_word c, C_word self, C_word k, C_word x, C_word y) + switch (i) { + case C_fix(0): return C_fix(0); + case C_fix(1): return rat; + case C_fix(-1): + num = C_s_a_u_i_integer_negate(ptr, 1, C_block_item(rat, 1)); + return C_ratnum(ptr, num , C_block_item(rat, 2)); + /* default: CONTINUE BELOW */ + } + + num = C_block_item(rat, 1); + denom = C_block_item(rat, 2); + + /* a/b * c/d = a*c / b*d [with b = 1] */ + /* = ((a / g) * c) / (d / g) */ + /* With g = gcd(a, d) and a = x [Knuth, 4.5.1] */ + gcd = C_s_a_u_i_integer_gcd(&a, 2, i, denom); + + /* Ensure bignums to simplify logic */ + gcd_big = (gcd & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, gcd) : gcd; + i_big = (i & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, i) : i; + d_big = (denom & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, denom) : denom; + + /* Calculate a/g (= i/gcd), which will later be multiplied by y */ + switch(bignum_cmp_unsigned(i_big, gcd_big)) { + case 0: + a_div_g = C_bignum_negativep(i_big) ? C_fix(-1) : C_fix(1); + break; + case -1: + clear_buffer_object(ab, gcd); + return C_fix(0); /* Save some work */ + break; + case 1: + default: + size = C_bignum_size(i_big) + 1 - C_bignum_size(gcd_big); + a_div_g = C_allocate_scratch_bignum( + &a, C_fix(size), C_mk_bool(C_bignum_negativep(i_big)), + C_SCHEME_FALSE); + size = C_bignum_size(i_big) + 1; + tmp_r = allocate_tmp_bignum(C_fix(size), C_SCHEME_FALSE, C_SCHEME_FALSE); + bignum_destructive_divide_full(i_big, gcd_big, a_div_g, + tmp_r, C_SCHEME_FALSE); + free_tmp_bignum(tmp_r); + a_div_g = C_bignum_simplify(a_div_g); + } + + /* Final numerator = a/g * c (= a_div_g * num) */ + num = C_s_a_u_i_integer_times(&a, 2, a_div_g, num); + num = move_buffer_object(ptr, ab, num); + + /* Calculate d/g (= denom/gcd). We already know |d| >= |g| */ + if(bignum_cmp_unsigned(d_big, gcd_big) == 0) { + denom = C_bignum_negativep(d_big) ? C_fix(-1) : C_fix(1); + } else { + size = C_bignum_size(d_big) + 1 - C_bignum_size(gcd_big); + denom = C_allocate_scratch_bignum( + &a, C_fix(size), C_SCHEME_FALSE, C_SCHEME_FALSE); + size = C_bignum_size(d_big) + 1; + tmp_r = allocate_tmp_bignum(C_fix(size), C_SCHEME_FALSE, C_SCHEME_FALSE); + bignum_destructive_divide_full(d_big, gcd_big, denom, + tmp_r, C_SCHEME_FALSE); + free_tmp_bignum(tmp_r); + denom = move_buffer_object(ptr, ab, C_bignum_simplify(denom)); + } + + clear_buffer_object(ab, gcd); + clear_buffer_object(ab, a_div_g); + + if (denom == C_fix(1)) return num; + else return C_ratnum(ptr, num, denom); +} + +/* This is truly wretched */ +static C_word rat_times_rat(C_word **ptr, C_word x, C_word y) +{ + C_word ab[C_SIZEOF_FIX_BIGNUM*14], *a = ab, + xnum, xdenom, ynum, ydenom, xnum_big, ynum_big, xdenom_big, ydenom_big, + g1, g1_big, g2, g2_big, tmp_r, num, denom, + a_div_g1, b_div_g2, c_div_g2, d_div_g1, size; + + xnum = C_block_item(x, 1); + xdenom = C_block_item(x, 2); + ynum = C_block_item(y, 1); + ydenom = C_block_item(y, 2); + + /* a/b * c/d = a*c / b*d [generic] */ + /* = ((a / g1) * (c / g2)) / ((b / g2) * (d / g1)) */ + /* With g1 = gcd(a, d) and g2 = gcd(b, c) [Knuth, 4.5.1] */ + g1 = C_s_a_u_i_integer_gcd(&a, 2, xnum, ydenom); + g2 = C_s_a_u_i_integer_gcd(&a, 2, ynum, xdenom); + + /* Ensure bignums to simplify logic */ + g1_big = (g1 & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, g1) : g1; + g2_big = (g2 & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, g2) : g2; + xnum_big = (xnum & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, xnum) : xnum; + xdenom_big = (xdenom & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, xdenom) : xdenom; + ynum_big = (ynum & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, ynum) : ynum; + ydenom_big = (ydenom & C_FIXNUM_BIT) ? C_a_u_i_fix_to_big(&a, ydenom) : ydenom; + + /* Calculate a/g1 (= xnum/g1), which will later be multiplied by c/g2 */ + if (bignum_cmp_unsigned(xnum_big, g1_big) == 0) { + a_div_g1 = C_bignum_negativep(xnum_big) ? C_fix(-1) : C_fix(1); + } else { /* We know |xnum| >= |g1| */ + size = C_bignum_size(xnum_big) + 1 - C_bignum_size(g1_big); + a_div_g1 = C_allocate_scratch_bignum( + &a, C_fix(size), C_mk_bool(C_bignum_negativep(xnum_big)), + C_SCHEME_FALSE); + size = C_bignum_size(xnum_big) + 1; + tmp_r = allocate_tmp_bignum(C_fix(size), C_SCHEME_FALSE, C_SCHEME_FALSE); + bignum_destructive_divide_full(xnum_big, g1_big, a_div_g1, + tmp_r, C_SCHEME_FALSE); + free_tmp_bignum(tmp_r); + a_div_g1 = C_bignum_simplify(a_div_g1); + } + + /* Calculate c/g2 (= ynum/g2), which will later be multiplied by a/g1 */ + if (bignum_cmp_unsigned(ynum_big, g2_big) == 0) { + c_div_g2 = C_bignum_negativep(ynum_big) ? C_fix(-1) : C_fix(1); + } else { /* We know |ynum| >= |g2| */ + size = C_bignum_size(ynum_big) + 1 - C_bignum_size(g2_big); + c_div_g2 = C_allocate_scratch_bignum( + &a, C_fix(size), C_mk_bool(C_bignum_negativep(ynum_big)), + C_SCHEME_FALSE); + size = C_bignum_size(ynum_big) + 1; + tmp_r = allocate_tmp_bignum(C_fix(size), C_SCHEME_FALSE, C_SCHEME_FALSE); + bignum_destructive_divide_full(ynum_big, g2_big, c_div_g2, + tmp_r, C_SCHEME_FALSE); + free_tmp_bignum(tmp_r); + c_div_g2 = C_bignum_simplify(c_div_g2); + } + + /* Final numerator = a/g1 * c/g2 */ + num = C_s_a_u_i_integer_times(&a, 2, a_div_g1, c_div_g2); + num = move_buffer_object(ptr, ab, num); + + /* Now, do the same for the denominator.... */ + + /* Calculate b/g2 (= xdenom/g2), which will later be multiplied by d/g1 */ + if (bignum_cmp_unsigned(xdenom_big, g2_big) == 0) { + b_div_g2 = C_bignum_negativep(xdenom_big) ? C_fix(-1) : C_fix(1); + } else { /* We know |xdenom| >= |g2| */ + size = C_bignum_size(xdenom_big) + 1 - C_bignum_size(g2_big); + b_div_g2 = C_allocate_scratch_bignum( + &a, C_fix(size), C_mk_bool(C_bignum_negativep(xdenom_big)), + C_SCHEME_FALSE); + size = C_bignum_size(xdenom_big) + 1; + tmp_r = allocate_tmp_bignum(C_fix(size), C_SCHEME_FALSE, C_SCHEME_FALSE); + bignum_destructive_divide_full(xdenom_big, g2_big, b_div_g2, + tmp_r, C_SCHEME_FALSE); + free_tmp_bignum(tmp_r); + b_div_g2 = C_bignum_simplify(b_div_g2); + } + + /* Calculate d/g1 (= ydenom/g1), which will later be multiplied by b/g2 */ + if (bignum_cmp_unsigned(ydenom_big, g1_big) == 0) { + d_div_g1 = C_bignum_negativep(ydenom_big) ? C_fix(-1) : C_fix(1); + } else { /* We know |ydenom| >= |g1| */ + size = C_bignum_size(ydenom_big) + 1 - C_bignum_size(g1_big); + d_div_g1 = C_allocate_scratch_bignum( + &a, C_fix(size), C_mk_bool(C_bignum_negativep(ydenom_big)), + C_SCHEME_FALSE); + size = C_bignum_size(ydenom_big) + 1; + tmp_r = allocate_tmp_bignum(C_fix(size), C_SCHEME_FALSE, C_SCHEME_FALSE); + bignum_destructive_divide_full(ydenom_big, g1_big, d_div_g1, + tmp_r, C_SCHEME_FALSE); + free_tmp_bignum(tmp_r); + d_div_g1 = C_bignum_simplify(d_div_g1); + } + + /* Final denominator = b/g2 * d/g1 */ + denom = C_s_a_u_i_integer_times(&a, 2, b_div_g2, d_div_g1); + denom = move_buffer_object(ptr, ab, denom); + + clear_buffer_object(ab, g1); + clear_buffer_object(ab, g2); + clear_buffer_object(ab, a_div_g1); + clear_buffer_object(ab, b_div_g2); + clear_buffer_object(ab, c_div_g2); + clear_buffer_object(ab, d_div_g1); + + if (denom == C_fix(1)) return num; + else return C_ratnum(ptr, num, denom); +} + +static C_word +cplx_times(C_word **ptr, C_word rx, C_word ix, C_word ry, C_word iy) +{ + /* Allocation here is kind of tricky: Each intermediate result can + * be at most a ratnum consisting of two bignums (2 digits), so + * C_SIZEOF_STRUCTURE(3) + C_SIZEOF_BIGNUM(2) = 11 words + */ + C_word ab[(C_SIZEOF_STRUCTURE(3) + C_SIZEOF_BIGNUM(2))*6], *a = ab, + r1, r2, i1, i2, r, i; + + /* a+bi * c+di = (a*c - b*d) + (a*d + b*c)i */ + /* We call these: r1 = a*c, r2 = b*d, i1 = a*d, i2 = b*c */ + r1 = C_s_a_i_times(&a, 2, rx, ry); + r2 = C_s_a_i_times(&a, 2, ix, iy); + i1 = C_s_a_i_times(&a, 2, rx, iy); + i2 = C_s_a_i_times(&a, 2, ix, ry); + + r = C_s_a_i_minus(ptr, 2, r1, r2); + i = C_s_a_i_plus(ptr, 2, i1, i2); + + r = move_buffer_object(ptr, ab, r); + i = move_buffer_object(ptr, ab, i); + + clear_buffer_object(ab, r1); + clear_buffer_object(ab, r2); + clear_buffer_object(ab, i1); + clear_buffer_object(ab, i2); + + if (C_truep(C_u_i_zerop(i))) return r; + else return C_cplxnum(ptr, r, i); +} + +/* The maximum size this needs is that required to store a complex + * number result, where both real and imag parts consist of ratnums. + * The maximum size of those ratnums is if they consist of two bignums + * from a fixnum multiplication (2 digits each), so we're looking at + * C_SIZEOF_STRUCTURE(3) * 3 + C_SIZEOF_BIGNUM(2) * 4 = 40 words! + */ +C_regparm C_word C_fcall +C_s_a_i_times(C_word **ptr, C_word n, C_word x, C_word y) { if (x & C_FIXNUM_BIT) { if (y & C_FIXNUM_BIT) { - C_word *a = C_alloc(C_SIZEOF_BIGNUM(2)); - C_kontinue(k, C_a_i_fixnum_times(&a, 2, x, y)); + return C_a_i_fixnum_times(ptr, 2, x, y); } else if (C_immediatep(y)) { barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); } else if (C_block_header(y) == C_FLONUM_TAG) { - C_word *a = C_alloc(C_SIZEOF_FLONUM); - C_kontinue(k, C_flonum(&a, (double)C_unfix(x) * C_flonum_magnitude(y))); + return C_flonum(ptr, (double)C_unfix(x) * C_flonum_magnitude(y)); } else if (C_truep(C_bignump(y))) { - C_word *a = C_alloc(C_SIZEOF_BIGNUM(2)); - C_kontinue(k, C_s_a_u_i_integer_times(&a, 2, x, y)); + return C_s_a_u_i_integer_times(ptr, 2, x, y); + } else if (C_block_header(y) == C_STRUCTURE3_TAG) { + if (C_block_item(y, 0) == C_ratnum_type_tag) { + return rat_times_integer(ptr, y, x); + } else if (C_block_item(y, 0) == C_cplxnum_type_tag) { + return cplx_times(ptr, x, C_fix(0), + C_block_item(y, 1), C_block_item(y, 2)); + } else { + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); + } } else { - try_extended_number("\003sysextended-times", 3, k, x, y); + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); } } else if (C_immediatep(x)) { barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", x); } else if (C_block_header(x) == C_FLONUM_TAG) { - C_word *a = C_alloc(C_SIZEOF_FLONUM); if (y & C_FIXNUM_BIT) { - C_kontinue(k, C_flonum(&a, C_flonum_magnitude(x) * (double)C_unfix(y))); + return C_flonum(ptr, C_flonum_magnitude(x) * (double)C_unfix(y)); } else if (C_immediatep(y)) { barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); } else if (C_block_header(y) == C_FLONUM_TAG) { - C_kontinue(k, C_a_i_flonum_times(&a, 2, x, y)); + return C_a_i_flonum_times(ptr, 2, x, y); } else if (C_truep(C_bignump(y))) { - C_kontinue(k, C_flonum(&a, C_flonum_magnitude(x)*C_bignum_to_double(y))); + return C_flonum(ptr, C_flonum_magnitude(x) * C_bignum_to_double(y)); + } else if (C_block_header(y) == C_STRUCTURE3_TAG) { + if (C_block_item(y, 0) == C_ratnum_type_tag) { + return C_s_a_i_times(ptr, 2, x, C_a_i_exact_to_inexact(ptr, 1, y)); + } else if (C_block_item(y, 0) == C_cplxnum_type_tag) { + C_word ab[C_SIZEOF_FLONUM], *a = ab; + return cplx_times(ptr, x, C_flonum(&a, 0.0), + C_block_item(y, 1), C_block_item(y, 2)); + } else { + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); + } } else { - try_extended_number("\003sysextended-times", 3, k, x, y); + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); } } else if (C_truep(C_bignump(x))) { if (y & C_FIXNUM_BIT) { - C_word *a = C_alloc(C_SIZEOF_BIGNUM(2)); - C_kontinue(k, C_s_a_u_i_integer_times(&a, 2, x, y)); + return C_s_a_u_i_integer_times(ptr, 2, x, y); } else if (C_immediatep(y)) { barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", x); } else if (C_block_header(y) == C_FLONUM_TAG) { - C_word *a = C_alloc(C_SIZEOF_FLONUM); - C_kontinue(k, C_flonum(&a, C_bignum_to_double(x)*C_flonum_magnitude(y))); + return C_flonum(ptr, C_bignum_to_double(x) * C_flonum_magnitude(y)); } else if (C_truep(C_bignump(y))) { - C_word *a = C_alloc(C_SIZEOF_BIGNUM(2)); - C_kontinue(k, C_s_a_u_i_integer_times(&a, 2, x, y)); + return C_s_a_u_i_integer_times(ptr, 2, x, y); + } else if (C_block_header(y) == C_STRUCTURE3_TAG) { + if (C_block_item(y, 0) == C_ratnum_type_tag) { + return rat_times_integer(ptr, y, x); + } else if (C_block_item(y, 0) == C_cplxnum_type_tag) { + return cplx_times(ptr, x, C_fix(0), + C_block_item(y, 1), C_block_item(y, 2)); + } else { + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); + } } else { - try_extended_number("\003sysextended-times", 3, k, x, y); + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); + } + } else if (C_block_header(x) == C_STRUCTURE3_TAG) { + if (C_block_item(x, 0) == C_ratnum_type_tag) { + if (y & C_FIXNUM_BIT) { + return rat_times_integer(ptr, x, y); + } else if (C_immediatep(y)) { + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); + } else if (C_block_header(y) == C_FLONUM_TAG) { + return C_s_a_i_times(ptr, 2, C_a_i_exact_to_inexact(ptr, 1, x), y); + } else if (C_truep(C_bignump(y))) { + return rat_times_integer(ptr, x, y); + } else if (C_block_header(y) == C_STRUCTURE3_TAG) { + if (C_block_item(y, 0) == C_ratnum_type_tag) { + return rat_times_rat(ptr, x, y); + } else if (C_block_item(y, 0) == C_cplxnum_type_tag) { + return cplx_times(ptr, x, C_fix(0), + C_block_item(y, 1),C_block_item(y, 2)); + } else { + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); + } + } else { + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", y); + } + } else if (C_block_item(x, 0) == C_cplxnum_type_tag) { + if (!C_immediatep(y) && C_block_header(y) == C_STRUCTURE3_TAG && + C_block_item(y, 0) == C_cplxnum_type_tag) { + return cplx_times(ptr, C_block_item(x, 1), C_block_item(x, 2), + C_block_item(y, 1), C_block_item(y, 2)); + } else { + C_word ab[C_SIZEOF_FLONUM], *a = ab, yi; + yi = C_truep(C_i_flonump(y)) ? C_flonum(&a,0) : C_fix(0); + return cplx_times(ptr, C_block_item(x, 1), C_block_item(x, 2), y, yi); + } + } else { + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", x); } } else { - try_extended_number("\003sysextended-times", 3, k, x, y); + barf(C_BAD_ARGUMENT_TYPE_NO_NUMBER_ERROR, "*", x); } } + C_regparm C_word C_fcall C_s_a_u_i_integer_times(C_word **ptr, C_word n, C_word x, C_word y) { @@ -7567,7 +7849,6 @@ bignum_times_bignum_karatsuba(C_word **ptr, C_word x, C_word y, C_word negp) } -/* XXX TODO OBSOLETE: This can be removed after recompiling c-platform.scm */ void C_ccall C_times(C_word c, C_word closure, C_word k, ...) { va_list v; diff --git a/types.db b/types.db index 10c1bc99..22ddaac8 100644 --- a/types.db +++ b/types.db @@ -374,7 +374,7 @@ ((integer integer) (integer) (##core#inline_allocate ("C_s_a_u_i_integer_times" 7) #(1) #(2))) ((* *) (number) - (##sys#*-2 #(1) #(2)))) + (##core#inline_allocate ("C_s_a_i_times" 40) #(1) #(2)))) (/ (#(procedure #:clean #:enforce #:foldable) / (number #!rest number) number) ((float fixnum) (float)Trap