~ chicken-core (chicken-5) 8c4ad133d56d4c543261c2793b9bde9c77094f2c
commit 8c4ad133d56d4c543261c2793b9bde9c77094f2c Author: felix <felix@call-with-current-continuation.org> AuthorDate: Wed Jan 28 11:52:37 2015 +0100 Commit: Evan Hanson <evhan@foldling.org> CommitDate: Wed Jan 28 11:52:37 2015 +0100 Removed srfi-1 sources and import lib diff --git a/srfi-1.import.scm b/srfi-1.import.scm deleted file mode 100644 index 061eb738..00000000 --- a/srfi-1.import.scm +++ /dev/null @@ -1,132 +0,0 @@ -;;;; srfi-1.import.scm - import library for "srfi-1" module -; -; Copyright (c) 2008-2014, The CHICKEN Team -; All rights reserved. -; -; Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following -; conditions are met: -; -; Redistributions of source code must retain the above copyright notice, this list of conditions and the following -; disclaimer. -; Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following -; disclaimer in the documentation and/or other materials provided with the distribution. -; Neither the name of the author nor the names of its contributors may be used to endorse or promote -; products derived from this software without specific prior written permission. -; -; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS -; OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY -; AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR -; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -; CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR -; OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -; POSSIBILITY OF SUCH DAMAGE. - - -(##sys#register-primitive-module - 'srfi-1 - '(alist-cons - alist-copy - alist-delete - alist-delete! - any - append! - append-map - append-map! - append-reverse - append-reverse! - assoc - break - break! - car+cdr - circular-list - circular-list? - concatenate - concatenate! - cons* - count - delete - delete! - delete-duplicates - delete-duplicates! - dotted-list? - drop - drop-right - drop-right! - drop-while - eighth - every - fifth - filter - filter! - filter-map - find - find-tail - first - fold - fold-right - fourth - iota - last - last-pair - length+ - list-copy - list-index - list-tabulate - list= - lset-adjoin - lset-diff+intersection - lset-diff+intersection! - lset-difference - lset-difference! - lset-intersection - lset-intersection! - lset-union - lset-union! - lset-xor - lset-xor! - lset<= - lset= - make-list - map - map! - map-in-order - member - ninth - not-pair? - null-list? - pair-fold - pair-fold-right - pair-for-each - partition - partition! - proper-list? - reduce - reduce-right - remove - remove! - reverse! - second - seventh - sixth - span - span! - split-at - split-at! - take - take! - take-right - take-while - take-while! - tenth - third - unfold - unfold-right - unzip1 - unzip2 - unzip3 - unzip4 - unzip5 - xcons - zip)) diff --git a/srfi-1.scm b/srfi-1.scm deleted file mode 100644 index 40b9f56a..00000000 --- a/srfi-1.scm +++ /dev/null @@ -1,1631 +0,0 @@ -;;;; srfi-1.scm - Shivers' reference implementation of SRFI-1 - - -; Some things to make it work with CHICKEN: (flw) -; - -(declare - (unit srfi-1) - (disable-interrupts) - (hide ##srfi1#cars+cdrs/no-test ##srfi1#cdrs ##srfi1#cars+ ##srfi1#really-append-map ##srfi1#cars+cdrs+ - ##srfi1#cars+cdrs ##srfi1#lset2<=) - (not standard-bindings member assoc)) - -(include "common-declarations.scm") - -(register-feature! 'srfi-1) - - -;;; SRFI-1 list-processing library -*- Scheme -*- -;;; Reference implementation -;;; -;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with -;;; this code as long as you do not remove this copyright notice or -;;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu. -;;; -Olin - -;;; This is a library of list- and pair-processing functions. I wrote it after -;;; carefully considering the functions provided by the libraries found in -;;; R4RS/R5RS Scheme, MIT Scheme, Gambit, RScheme, MzScheme, slib, Common -;;; Lisp, Bigloo, guile, T, APL and the SML standard basis. It is a pretty -;;; rich toolkit, providing a superset of the functionality found in any of -;;; the various Schemes I considered. - -;;; This implementation is intended as a portable reference implementation -;;; for SRFI-1. See the porting notes below for more information. - -;;; Exported: -;;; xcons tree-copy make-list list-tabulate cons* list-copy -;;; proper-list? circular-list? dotted-list? not-pair? null-list? list= -;;; circular-list length+ -;;; iota -;;; first second third fourth fifth sixth seventh eighth ninth tenth -;;; car+cdr -;;; take drop -;;; take-right drop-right -;;; take! drop-right! -;;; split-at split-at! -;;; last last-pair -;;; zip unzip1 unzip2 unzip3 unzip4 unzip5 -;;; count -;;; append! append-reverse append-reverse! concatenate concatenate! -;;; unfold fold pair-fold reduce -;;; unfold-right fold-right pair-fold-right reduce-right -;;; append-map append-map! map! pair-for-each filter-map map-in-order -;;; filter partition remove -;;; filter! partition! remove! -;;; find find-tail any every list-index -;;; take-while drop-while take-while! -;;; span break span! break! - -;;; In principle, the following R4RS list- and pair-processing procedures -;;; are also part of this package's exports, although they are not defined -;;; in this file: -;;; Primitives: cons pair? null? car cdr set-car! set-cdr! -;;; Non-primitives: list length append reverse cadr ... cddddr list-ref -;;; memq memv assq assv -;;; (The non-primitives are defined in this file, but commented out.) -;;; -;;; These R4RS procedures have extended definitions in SRFI-1 and are defined -;;; in this file: -;;; map for-each member assoc -;;; -;;; The remaining two R4RS list-processing procedures are not included: -;;; list-tail (use drop) -;;; list? (use proper-list?) - - -;;; A note on recursion and iteration/reversal: -;;; Many iterative list-processing algorithms naturally compute the elements -;;; of the answer list in the wrong order (left-to-right or head-to-tail) from -;;; the order needed to cons them into the proper answer (right-to-left, or -;;; tail-then-head). One style or idiom of programming these algorithms, then, -;;; loops, consing up the elements in reverse order, then destructively -;;; reverses the list at the end of the loop. I do not do this. The natural -;;; and efficient way to code these algorithms is recursively. This trades off -;;; intermediate temporary list structure for intermediate temporary stack -;;; structure. In a stack-based system, this improves cache locality and -;;; lightens the load on the GC system. Don't stand on your head to iterate! -;;; Recurse, where natural. Multiple-value returns make this even more -;;; convenient, when the recursion/iteration has multiple state values. - -;;; Porting: -;;; This is carefully tuned code; do not modify casually. -;;; - It is careful to share storage when possible; -;;; - Side-effecting code tries not to perform redundant writes. -;;; -;;; That said, a port of this library to a specific Scheme system might wish -;;; to tune this code to exploit particulars of the implementation. -;;; The single most important compiler-specific optimisation you could make -;;; to this library would be to add rewrite rules or transforms to: -;;; - transform applications of n-ary procedures (e.g. LIST=, CONS*, APPEND, -;;; LSET-UNION) into multiple applications of a primitive two-argument -;;; variant. -;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD, -;;; ANY, EVERY) into open-coded loops. The killer here is that these -;;; functions are n-ary. Handling the general case is quite inefficient, -;;; requiring many intermediate data structures to be allocated and -;;; discarded. -;;; - transform applications of procedures that take optional arguments -;;; into calls to variants that do not take optional arguments. This -;;; eliminates unnecessary consing and parsing of the rest parameter. -;;; -;;; These transforms would provide BIG speedups. In particular, the n-ary -;;; mapping functions are particularly slow and cons-intensive, and are good -;;; candidates for tuning. I have coded fast paths for the single-list cases, -;;; but what you really want to do is exploit the fact that the compiler -;;; usually knows how many arguments are being passed to a particular -;;; application of these functions -- they are usually explicitly called, not -;;; passed around as higher-order values. If you can arrange to have your -;;; compiler produce custom code or custom linkages based on the number of -;;; arguments in the call, you can speed these functions up a *lot*. But this -;;; kind of compiler technology no longer exists in the Scheme world as far as -;;; I can see. -;;; -;;; Note that this code is, of course, dependent upon standard bindings for -;;; the R5RS procedures -- i.e., it assumes that the variable CAR is bound -;;; to the procedure that takes the car of a list. If your Scheme -;;; implementation allows user code to alter the bindings of these procedures -;;; in a manner that would be visible to these definitions, then there might -;;; be trouble. You could consider horrible kludgery along the lines of -;;; (define fact -;;; (let ((= =) (- -) (* *)) -;;; (letrec ((real-fact (lambda (n) -;;; (if (= n 0) 1 (* n (real-fact (- n 1))))))) -;;; real-fact))) -;;; Or you could consider shifting to a reasonable Scheme system that, say, -;;; has a module system protecting code from this kind of lossage. -;;; -;;; This code does a fair amount of run-time argument checking. If your -;;; Scheme system has a sophisticated compiler that can eliminate redundant -;;; error checks, this is no problem. However, if not, these checks incur -;;; some performance overhead -- and, in a safe Scheme implementation, they -;;; are in some sense redundant: if we don't check to see that the PROC -;;; parameter is a procedure, we'll find out anyway three lines later when -;;; we try to call the value. It's pretty easy to rip all this argument -;;; checking code out if it's inappropriate for your implementation -- just -;;; nuke every call to CHECK-ARG. -;;; -;;; On the other hand, if you *do* have a sophisticated compiler that will -;;; actually perform soft-typing and eliminate redundant checks (Rice's systems -;;; being the only possible candidate of which I'm aware), leaving these checks -;;; in can *help*, since their presence can be elided in redundant cases, -;;; and in cases where they are needed, performing the checks early, at -;;; procedure entry, can "lift" a check out of a loop. -;;; -;;; Finally, I have only checked the properties that can portably be checked -;;; with R5RS Scheme -- and this is not complete. You may wish to alter -;;; the CHECK-ARG parameter checks to perform extra, implementation-specific -;;; checks, such as procedure arity for higher-order values. -;;; -;;; The code has only these non-R4RS dependencies: -;;; A few calls to an ERROR procedure; -;;; Uses of the R5RS multiple-value procedure VALUES and the m-v binding -;;; RECEIVE macro (which isn't R5RS, but is a trivial macro). -;;; Many calls to a parameter-checking procedure check-arg: -;;; (define (check-arg pred val caller) -;;; (let lp ((val val)) -;;; (if (pred val) val (lp (error "Bad argument" val pred caller))))) -;;; A few uses of the LET-OPTIONAL and :OPTIONAL macros for parsing -;;; optional arguments. -;;; -;;; Most of these procedures use the NULL-LIST? test to trigger the -;;; base case in the inner loop or recursion. The NULL-LIST? function -;;; is defined to be a careful one -- it raises an error if passed a -;;; non-nil, non-pair value. The spec allows an implementation to use -;;; a less-careful implementation that simply defines NULL-LIST? to -;;; be NOT-PAIR?. This would speed up the inner loops of these procedures -;;; at the expense of having them silently accept dotted lists. - -;;; A note on dotted lists: -;;; I, personally, take the view that the only consistent view of lists -;;; in Scheme is the view that *everything* is a list -- values such as -;;; 3 or "foo" or 'bar are simply empty dotted lists. This is due to the -;;; fact that Scheme actually has no true list type. It has a pair type, -;;; and there is an *interpretation* of the trees built using this type -;;; as lists. -;;; -;;; I lobbied to have these list-processing procedures hew to this -;;; view, and accept any value as a list argument. I was overwhelmingly -;;; overruled during the SRFI discussion phase. So I am inserting this -;;; text in the reference lib and the SRFI spec as a sort of "minority -;;; opinion" dissent. -;;; -;;; Many of the procedures in this library can be trivially redefined -;;; to handle dotted lists, just by changing the NULL-LIST? base-case -;;; check to NOT-PAIR?, meaning that any non-pair value is taken to be -;;; an empty list. For most of these procedures, that's all that is -;;; required. -;;; -;;; However, we have to do a little more work for some procedures that -;;; *produce* lists from other lists. Were we to extend these procedures to -;;; accept dotted lists, we would have to define how they terminate the lists -;;; produced as results when passed a dotted list. I designed a coherent set -;;; of termination rules for these cases; this was posted to the SRFI-1 -;;; discussion list. I additionally wrote an earlier version of this library -;;; that implemented that spec. It has been discarded during later phases of -;;; the definition and implementation of this library. -;;; -;;; The argument *against* defining these procedures to work on dotted -;;; lists is that dotted lists are the rare, odd case, and that by -;;; arranging for the procedures to handle them, we lose error checking -;;; in the cases where a dotted list is passed by accident -- e.g., when -;;; the programmer swaps a two arguments to a list-processing function, -;;; one being a scalar and one being a list. For example, -;;; (member '(1 3 5 7 9) 7) -;;; This would quietly return #f if we extended MEMBER to accept dotted -;;; lists. -;;; -;;; The SRFI discussion record contains more discussion on this topic. - - -;;; Constructors -;;;;;;;;;;;;;;;; - -;;; Occasionally useful as a value to be passed to a fold or other -;;; higher-order procedure. -(define (xcons d a) (cons a d)) - -;;;; Recursively copy every cons. -;(define (tree-copy x) -; (let recur ((x x)) -; (if (not (pair? x)) x -; (cons (recur (car x)) (recur (cdr x)))))) - -;;; Make a list of length LEN. - -(define (make-list len . maybe-elt) -; (check-arg (lambda (n) (and (integer? n) (>= n 0))) len make-list) - (##sys#check-exact len 'make-list) - (let ((elt (cond ((null? maybe-elt) #f) ; Default value - ((null? (cdr maybe-elt)) (car maybe-elt)) - (else (##sys#error 'make-list "Too many arguments to MAKE-LIST" - (cons len maybe-elt)))))) - (do ((i len (fx- i 1)) - (ans '() (cons elt ans))) - ((fx<= i 0) ans)))) - - -;(define (list . ans) ans) ; R4RS - - -;;; Make a list of length LEN. Elt i is (PROC i) for 0 <= i < LEN. - -(define (list-tabulate len proc) -; (check-arg (lambda (n) (and (integer? n) (>= n 0))) len list-tabulate) -; (check-arg procedure? proc list-tabulate) - (##sys#check-exact len 'list-tabulate) - (do ((i (fx- len 1) (fx- i 1)) - (ans '() (cons (proc i) ans))) - ((fx< i 0) ans))) - -;;; (cons* a1 a2 ... an) = (cons a1 (cons a2 (cons ... an))) -;;; (cons* a1) = a1 (cons* a1 a2 ...) = (cons a1 (cons* a2 ...)) -;;; -;;; (cons first (unfold not-pair? car cdr rest values)) - -(define (cons* first . rest) - (let recur ((x first) (rest rest)) - (if (pair? rest) - (cons x (recur (car rest) (cdr rest))) - x))) - -;;; (unfold not-pair? car cdr lis values) - -(define (list-copy lis) - (let recur ((lis lis)) - (if (pair? lis) - (cons (car lis) (recur (cdr lis))) - lis))) - -;;; IOTA count [start step] (start start+step ... start+(count-1)*step) - -(define (iota count . maybe-start+step) -; (check-arg integer? count iota) - (##sys#check-number count 'iota) - (if (< count 0) (##sys#error 'iota "Negative step count" iota count)) - (let-optionals maybe-start+step ((start 0) ; Olin, I'm tired of fixing your stupid bugs - why didn't - (step 1) ) ; you use your own macros, then? - (##sys#check-number start 'iota) - (##sys#check-number step 'iota) -; (check-arg number? start iota) -; (check-arg number? step iota) - (let ((last-val (+ start (* (- count 1) step)))) - (do ((count count (- count 1)) - (val last-val (- val step)) - (ans '() (cons val ans))) - ((<= count 0) ans))))) - -;;; I thought these were lovely, but the public at large did not share my -;;; enthusiasm... -;;; :IOTA to (0 ... to-1) -;;; :IOTA from to (from ... to-1) -;;; :IOTA from to step (from from+step ...) - -;;; IOTA: to (1 ... to) -;;; IOTA: from to (from+1 ... to) -;;; IOTA: from to step (from+step from+2step ...) - -;(define (##srfi1#parse-iota-args arg1 rest-args proc) -; (let ((check (lambda (n) (check-arg integer? n proc)))) -; (check arg1) -; (if (pair? rest-args) -; (let ((arg2 (check (car rest-args))) -; (rest (cdr rest-args))) -; (if (pair? rest) -; (let ((arg3 (check (car rest))) -; (rest (cdr rest))) -; (if (pair? rest) (error "Too many parameters" proc arg1 rest-args) -; (values arg1 arg2 arg3))) -; (values arg1 arg2 1))) -; (values 0 arg1 1)))) -; -;(define (iota: arg1 . rest-args) -; (receive (from to step) (##srfi1#parse-iota-args arg1 rest-args iota:) -; (let* ((numsteps (floor (/ (- to from) step))) -; (last-val (+ from (* step numsteps)))) -; (if (< numsteps 0) (error "Negative step count" iota: from to step)) -; (do ((steps-left numsteps (- steps-left 1)) -; (val last-val (- val step)) -; (ans '() (cons val ans))) -; ((<= steps-left 0) ans))))) -; -; -;(define (:iota arg1 . rest-args) -; (receive (from to step) (##srfi1#parse-iota-args arg1 rest-args :iota) -; (let* ((numsteps (ceiling (/ (- to from) step))) -; (last-val (+ from (* step (- numsteps 1))))) -; (if (< numsteps 0) (error "Negative step count" :iota from to step)) -; (do ((steps-left numsteps (- steps-left 1)) -; (val last-val (- val step)) -; (ans '() (cons val ans))) -; ((<= steps-left 0) ans))))) - - - -(define (circular-list val1 . vals) - (let ((ans (cons val1 vals))) - (set-cdr! (last-pair ans) ans) - ans)) - -;;; <proper-list> ::= () ; Empty proper list -;;; | (cons <x> <proper-list>) ; Proper-list pair -;;; Note that this definition rules out circular lists -- and this -;;; function is required to detect this case and return false. - -(define proper-list? list?) - -#;(define (proper-list? x) - (let lp ((x x) (lag x)) - (if (pair? x) - (let ((x (cdr x))) - (if (pair? x) - (let ((x (cdr x)) - (lag (cdr lag))) - (and (not (eq? x lag)) (lp x lag))) - (null? x))) - (null? x)))) - - -;;; A dotted list is a finite list (possibly of length 0) terminated -;;; by a non-nil value. Any non-cons, non-nil value (e.g., "foo" or 5) -;;; is a dotted list of length 0. -;;; -;;; <dotted-list> ::= <non-nil,non-pair> ; Empty dotted list -;;; | (cons <x> <dotted-list>) ; Proper-list pair - -(define (dotted-list? x) - (let lp ((x x) (lag x)) - (if (pair? x) - (let ((x (cdr x))) - (if (pair? x) - (let ((x (cdr x)) - (lag (cdr lag))) - (and (not (eq? x lag)) (lp x lag))) - (not (null? x)))) - (not (null? x))))) - -(define (circular-list? x) - (let lp ((x x) (lag x)) - (and (pair? x) - (let ((x (cdr x))) - (and (pair? x) - (let ((x (cdr x)) - (lag (cdr lag))) - (or (eq? x lag) (lp x lag)))))))) - -(define (not-pair? x) (##core#inline "C_i_not_pair_p" x)) - -;;; This is a legal definition which is fast and sloppy: -;;; (define null-list? not-pair?) -;;; but we'll provide a more careful one: -(define (null-list? l) (##core#inline "C_i_null_list_p" l)) - -(define (list= = . lists) - (##sys#check-closure = 'list=) - (or (null? lists) ; special case - (let lp1 ((list-a (car lists)) (others (cdr lists))) - (or (null? others) - (let ((list-b (car others)) - (others (cdr others))) - (if (eq? list-a list-b) ; EQ? => LIST= - (lp1 list-b others) - (let lp2 ((la list-a) (lb list-b)) - (if (null-list? la) - (and (null-list? lb) - (lp1 list-b others)) - (and (not (null-list? lb)) - (= (car la) (car lb)) - (lp2 (cdr la) (cdr lb))))))))))) - - - -;;; R4RS, so commented out. -;(define (length x) ; LENGTH may diverge or -; (let lp ((x x) (len 0)) ; raise an error if X is -; (if (pair? x) ; a circular list. This version -; (lp (cdr x) (+ len 1)) ; diverges. -; len))) - -(define (length+ x) ; Returns #f if X is circular. - (let lp ((x x) (lag x) (len 0)) - (if (pair? x) - (let ((x (cdr x)) - (len (fx+ len 1))) - (if (pair? x) - (let ((x (cdr x)) - (lag (cdr lag)) - (len (fx+ len 1))) - (and (not (eq? x lag)) (lp x lag len))) - len)) - len))) - -(define (zip list1 . more-lists) (apply map list list1 more-lists)) - - -;;; Selectors -;;;;;;;;;;;;; - -;;; R4RS non-primitives: -;(define (caar x) (car (car x))) -;(define (cadr x) (car (cdr x))) -;(define (cdar x) (cdr (car x))) -;(define (cddr x) (cdr (cdr x))) -; -;(define (caaar x) (caar (car x))) -;(define (caadr x) (caar (cdr x))) -;(define (cadar x) (cadr (car x))) -;(define (caddr x) (cadr (cdr x))) -;(define (cdaar x) (cdar (car x))) -;(define (cdadr x) (cdar (cdr x))) -;(define (cddar x) (cddr (car x))) -;(define (cdddr x) (cddr (cdr x))) -; -;(define (caaaar x) (caaar (car x))) -;(define (caaadr x) (caaar (cdr x))) -;(define (caadar x) (caadr (car x))) -;(define (caaddr x) (caadr (cdr x))) -;(define (cadaar x) (cadar (car x))) -;(define (cadadr x) (cadar (cdr x))) -;(define (caddar x) (caddr (car x))) -;(define (cadddr x) (caddr (cdr x))) -;(define (cdaaar x) (cdaar (car x))) -;(define (cdaadr x) (cdaar (cdr x))) -;(define (cdadar x) (cdadr (car x))) -;(define (cdaddr x) (cdadr (cdr x))) -;(define (cddaar x) (cddar (car x))) -;(define (cddadr x) (cddar (cdr x))) -;(define (cdddar x) (cdddr (car x))) -;(define (cddddr x) (cdddr (cdr x))) - - -(define first car) -(define second cadr) -(define third caddr) -(define fourth cadddr) -(define (fifth x) (car (cddddr x))) -(define (sixth x) (cadr (cddddr x))) -(define (seventh x) (caddr (cddddr x))) -(define (eighth x) (cadddr (cddddr x))) -(define (ninth x) (car (cddddr (cddddr x)))) -(define (tenth x) (cadr (cddddr (cddddr x)))) - -(define (car+cdr pair) - (##sys#check-pair pair 'car+cdr) - (values (##sys#slot pair 0) (##sys#slot pair 1)) ) - -;;; take & drop - -(define (take lis k) - (##sys#check-exact k 'take) -; (check-arg integer? k take) - (let recur ((lis lis) (k k)) - (if (eq? 0 k) '() - (cons (car lis) - (recur (cdr lis) (fx- k 1)))))) - -(define (drop lis k) - (##sys#check-exact k 'drop) -; (check-arg integer? k drop) - (let iter ((lis lis) (k k)) - (if (eq? 0 k) lis (iter (cdr lis) (fx- k 1))))) - -(define (take! lis k) - (##sys#check-exact k 'take!) -; (check-arg integer? k take!) - (if (eq? 0 k) '() - (begin (set-cdr! (drop lis (fx- k 1)) '()) - lis))) - -;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list, -;;; off by K, then chasing down the list until the lead pointer falls off -;;; the end. - -(define (take-right lis k) -; (check-arg integer? k take-right) - (let lp ((lag lis) (lead (drop lis k))) - (if (pair? lead) - (lp (cdr lag) (cdr lead)) - lag))) - -(define (drop-right lis k) -; (check-arg integer? k drop-right) - (let recur ((lag lis) (lead (drop lis k))) - (if (pair? lead) - (cons (car lag) (recur (cdr lag) (cdr lead))) - '()))) - -;;; In this function, LEAD is actually K+1 ahead of LAG. This lets -;;; us stop LAG one step early, in time to smash its cdr to (). -(define (drop-right! lis k) -; (check-arg integer? k drop-right!) - (let ((lead (drop lis k))) - (if (pair? lead) - - (let lp ((lag lis) (lead (cdr lead))) ; Standard case - (if (pair? lead) - (lp (cdr lag) (cdr lead)) - (begin (set-cdr! lag '()) - lis))) - - '()))) ; Special case dropping everything -- no cons to side-effect. - -;(define (list-ref lis i) (car (drop lis i))) ; R4RS - -;;; These use the APL convention, whereby negative indices mean -;;; "from the right." I liked them, but they didn't win over the -;;; SRFI reviewers. -;;; K >= 0: Take and drop K elts from the front of the list. -;;; K <= 0: Take and drop -K elts from the end of the list. - -;(define (take lis k) -; (check-arg integer? k take) -; (if (negative? k) -; (list-tail lis (+ k (length lis))) -; (let recur ((lis lis) (k k)) -; (if (zero? k) '() -; (cons (car lis) -; (recur (cdr lis) (- k 1))))))) -; -;(define (drop lis k) -; (check-arg integer? k drop) -; (if (negative? k) -; (let recur ((lis lis) (nelts (+ k (length lis)))) -; (if (zero? nelts) '() -; (cons (car lis) -; (recur (cdr lis) (- nelts 1))))) -; (list-tail lis k))) -; -; -;(define (take! lis k) -; (check-arg integer? k take!) -; (cond ((zero? k) '()) -; ((positive? k) -; (set-cdr! (list-tail lis (- k 1)) '()) -; lis) -; (else (list-tail lis (+ k (length lis)))))) -; -;(define (drop! lis k) -; (check-arg integer? k drop!) -; (if (negative? k) -; (let ((nelts (+ k (length lis)))) -; (if (zero? nelts) '() -; (begin (set-cdr! (list-tail lis (- nelts 1)) '()) -; lis))) -; (list-tail lis k))) - -(define (split-at x k) - (##sys#check-exact k 'split-at) -; (check-arg integer? k split-at) - (let recur ((lis x) (k k)) - (if (eq? 0 k) (values '() lis) - (receive (prefix suffix) (recur (cdr lis) (fx- k 1)) - (values (cons (car lis) prefix) suffix))))) - -(define (split-at! x k) - (##sys#check-exact k 'split-at!) -; (check-arg integer? k split-at!) - (if (eq? 0 k) (values '() x) - (let* ((prev (drop x (fx- k 1))) - (suffix (cdr prev))) - (set-cdr! prev '()) - (values x suffix)))) - - -(define (last lis) (car (last-pair lis))) - -(define (last-pair lis) -; (check-arg pair? lis last-pair) - (let lp ((lis lis)) - (let ((tail (cdr lis))) - (if (pair? tail) (lp tail) lis)))) - - -;;; Unzippers -- 1 through 5 -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -(define (unzip1 lis) (map car lis)) - -(define (unzip2 lis) - (let recur ((lis lis)) - (if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle - (let ((elt (car lis))) ; dotted lists. - (receive (a b) (recur (cdr lis)) - (values (cons (car elt) a) - (cons (cadr elt) b))))))) - -(define (unzip3 lis) - (let recur ((lis lis)) - (if (null-list? lis) (values lis lis lis) - (let ((elt (car lis))) - (receive (a b c) (recur (cdr lis)) - (values (cons (car elt) a) - (cons (cadr elt) b) - (cons (caddr elt) c))))))) - -(define (unzip4 lis) - (let recur ((lis lis)) - (if (null-list? lis) (values lis lis lis lis) - (let ((elt (car lis))) - (receive (a b c d) (recur (cdr lis)) - (values (cons (car elt) a) - (cons (cadr elt) b) - (cons (caddr elt) c) - (cons (cadddr elt) d))))))) - -(define (unzip5 lis) - (let recur ((lis lis)) - (if (null-list? lis) (values lis lis lis lis lis) - (let ((elt (car lis))) - (receive (a b c d e) (recur (cdr lis)) - (values (cons (car elt) a) - (cons (cadr elt) b) - (cons (caddr elt) c) - (cons (cadddr elt) d) - (cons (car (cddddr elt)) e))))))) - - -;;; append! append-reverse append-reverse! concatenate concatenate! -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -(define (append! . lists) - ;; First, scan through lists looking for a non-empty one. - (let lp ((lists lists) (prev '())) - (if (not (pair? lists)) prev - (let ((first (car lists)) - (rest (cdr lists))) - (if (not (pair? first)) (lp rest first) - - ;; Now, do the splicing. - (let lp2 ((tail-cons (last-pair first)) - (rest rest)) - (if (pair? rest) - (let ((next (car rest)) - (rest (cdr rest))) - (set-cdr! tail-cons next) - (lp2 (if (pair? next) (last-pair next) tail-cons) - rest)) - first))))))) - -;;; APPEND is R4RS. -;(define (append . lists) -; (if (pair? lists) -; (let recur ((list1 (car lists)) (lists (cdr lists))) -; (if (pair? lists) -; (let ((tail (recur (car lists) (cdr lists)))) -; (fold-right cons tail list1)) ; Append LIST1 & TAIL. -; list1)) -; '())) - -;(define (append-reverse rev-head tail) (fold cons tail rev-head)) - -;(define (append-reverse! rev-head tail) -; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair) -; tail -; rev-head)) - -;;; Hand-inline the FOLD and PAIR-FOLD ops for speed. - -(define (append-reverse rev-head tail) - (let lp ((rev-head rev-head) (tail tail)) - (if (null-list? rev-head) tail - (lp (cdr rev-head) (cons (car rev-head) tail))))) - -(define (append-reverse! rev-head tail) - (let lp ((rev-head rev-head) (tail tail)) - (if (null-list? rev-head) tail - (let ((next-rev (cdr rev-head))) - (set-cdr! rev-head tail) - (lp next-rev rev-head))))) - - -(define (concatenate lists) (reduce-right append '() lists)) -(define (concatenate! lists) (reduce-right append! '() lists)) - -;;; Fold/map internal utilities -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;;; These little internal utilities are used by the general -;;; fold & mapper funs for the n-ary cases . It'd be nice if they got inlined. -;;; One the other hand, the n-ary cases are painfully inefficient as it is. -;;; An aggressive implementation should simply re-write these functions -;;; for raw efficiency; I have written them for as much clarity, portability, -;;; and simplicity as can be achieved. -;;; -;;; I use the dreaded call/cc to do local aborts. A good compiler could -;;; handle this with extreme efficiency. An implementation that provides -;;; a one-shot, non-persistent continuation grabber could help the compiler -;;; out by using that in place of the call/cc's in these routines. -;;; -;;; These functions have funky definitions that are precisely tuned to -;;; the needs of the fold/map procs -- for example, to minimize the number -;;; of times the argument lists need to be examined. - -;;; Return (map cdr lists). -;;; However, if any element of LISTS is empty, just abort and return '(). -(define (##srfi1#cdrs lists) - (##sys#call-with-current-continuation - (lambda (abort) - (let recur ((lists lists)) - (if (pair? lists) - (let ((lis (car lists))) - (if (null-list? lis) (abort '()) - (cons (cdr lis) (recur (cdr lists))))) - '()))))) - -(define (##srfi1#cars+ lists last-elt) ; (append! (##sys#map car lists) (list last-elt)) - (let recur ((lists lists)) - (if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt)))) - -;;; LISTS is a (not very long) non-empty list of lists. -;;; Return two lists: the cars & the cdrs of the lists. -;;; However, if any of the lists is empty, just abort and return [() ()]. - -(define (##srfi1#cars+cdrs lists) - (##sys#call-with-current-continuation - (lambda (abort) - (let recur ((lists lists)) - (if (pair? lists) - (receive (list other-lists) (car+cdr lists) - (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out - (receive (a d) (car+cdr list) - (receive (cars cdrs) (recur other-lists) - (values (cons a cars) (cons d cdrs)))))) - (values '() '())))))) - -;;; Like ##srfi1#CARS+CDRS, but we pass in a final elt tacked onto the end of the -;;; cars list. What a hack. -(define (##srfi1#cars+cdrs+ lists cars-final) - (##sys#call-with-current-continuation - (lambda (abort) - (let recur ((lists lists)) - (if (pair? lists) - (receive (list other-lists) (car+cdr lists) - (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out - (receive (a d) (car+cdr list) - (receive (cars cdrs) (recur other-lists) - (values (cons a cars) (cons d cdrs)))))) - (values (list cars-final) '())))))) - -;;; Like ##srfi1#CARS+CDRS, but blow up if any list is empty. -(define (##srfi1#cars+cdrs/no-test lists) - (let recur ((lists lists)) - (if (pair? lists) - (receive (list other-lists) (car+cdr lists) - (receive (a d) (car+cdr list) - (receive (cars cdrs) (recur other-lists) - (values (cons a cars) (cons d cdrs))))) - (values '() '())))) - - -;;; count -;;;;;;;;; -(define (count pred list1 . lists) -; (check-arg procedure? pred count) - (if (pair? lists) - - ;; N-ary case - (let lp ((list1 list1) (lists lists) (i 0)) - (if (null-list? list1) i - (receive (as ds) (##srfi1#cars+cdrs lists) - (if (null? as) i - (lp (cdr list1) ds - (if (apply pred (car list1) as) (fx+ i 1) i)))))) - - ;; Fast path - (let lp ((lis list1) (i 0)) - (if (null-list? lis) i - (lp (cdr lis) (if (pred (car lis)) (fx+ i 1) i)))))) - - -;;; fold/unfold -;;;;;;;;;;;;;;; - -(define (unfold-right p f g seed . maybe-tail) -; (check-arg procedure? p unfold-right) -; (check-arg procedure? f unfold-right) -; (check-arg procedure? g unfold-right) - (let lp ((seed seed) (ans (optional maybe-tail '()))) - (if (p seed) ans - (lp (g seed) - (cons (f seed) ans))))) - - -(define (unfold p f g seed . maybe-tail-gen) -; (check-arg procedure? p unfold) -; (check-arg procedure? f unfold) -; (check-arg procedure? g unfold) - (if (pair? maybe-tail-gen) - - (let ((tail-gen (car maybe-tail-gen))) - (if (pair? (cdr maybe-tail-gen)) - (apply error "Too many arguments" unfold p f g seed maybe-tail-gen) - - (let recur ((seed seed)) - (if (p seed) (tail-gen seed) - (cons (f seed) (recur (g seed))))))) - - (let recur ((seed seed)) - (if (p seed) '() - (cons (f seed) (recur (g seed))))))) - - -(define (fold kons knil lis1 . lists) -; (check-arg procedure? kons fold) - (if (pair? lists) - (let lp ((lists (cons lis1 lists)) (ans knil)) ; N-ary case - (receive (cars+ans cdrs) (##srfi1#cars+cdrs+ lists ans) - (if (null? cars+ans) ans ; Done. - (lp cdrs (apply kons cars+ans))))) - - (let lp ((lis lis1) (ans knil)) ; Fast path - (if (null-list? lis) ans - (lp (cdr lis) (kons (car lis) ans)))))) - - -(define (fold-right kons knil lis1 . lists) -; (check-arg procedure? kons fold-right) - (if (pair? lists) - (let recur ((lists (cons lis1 lists))) ; N-ary case - (let ((cdrs (##srfi1#cdrs lists))) - (if (null? cdrs) knil - (apply kons (##srfi1#cars+ lists (recur cdrs)))))) - - (let recur ((lis lis1)) ; Fast path - (if (null-list? lis) knil - (let ((head (car lis))) - (kons head (recur (cdr lis)))))))) - - -(define (pair-fold-right f zero lis1 . lists) -; (check-arg procedure? f pair-fold-right) - (if (pair? lists) - (let recur ((lists (cons lis1 lists))) ; N-ary case - (let ((cdrs (##srfi1#cdrs lists))) - (if (null? cdrs) zero - (apply f (append! lists (list (recur cdrs))))))) - - (let recur ((lis lis1)) ; Fast path - (if (null-list? lis) zero (f lis (recur (cdr lis))))))) - -(define (pair-fold f zero lis1 . lists) -; (check-arg procedure? f pair-fold) - (if (pair? lists) - (let lp ((lists (cons lis1 lists)) (ans zero)) ; N-ary case - (let ((tails (##srfi1#cdrs lists))) - (if (null? tails) ans - (lp tails (apply f (append! lists (list ans))))))) - - (let lp ((lis lis1) (ans zero)) - (if (null-list? lis) ans - (let ((tail (cdr lis))) ; Grab the cdr now, - (lp tail (f lis ans))))))) ; in case F SET-CDR!s LIS. - - -;;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case. -;;; These cannot meaningfully be n-ary. - -(define (reduce f ridentity lis) -; (check-arg procedure? f reduce) - (if (null-list? lis) ridentity - (fold f (car lis) (cdr lis)))) - -(define (reduce-right f ridentity lis) -; (check-arg procedure? f reduce-right) - (if (null-list? lis) ridentity - (let recur ((head (car lis)) (lis (cdr lis))) - (if (pair? lis) - (f head (recur (car lis) (cdr lis))) - head)))) - - - -;;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -(define (append-map f lis1 . lists) - (##srfi1#really-append-map append-map append f lis1 lists)) -(define (append-map! f lis1 . lists) - (##srfi1#really-append-map append-map! append! f lis1 lists)) - -(define (##srfi1#really-append-map who appender f lis1 lists) -; (check-arg procedure? f who) - (if (pair? lists) - (receive (cars cdrs) (##srfi1#cars+cdrs (cons lis1 lists)) - (if (null? cars) '() - (let recur ((cars cars) (cdrs cdrs)) - (let ((vals (apply f cars))) - (receive (cars2 cdrs2) (##srfi1#cars+cdrs cdrs) - (if (null? cars2) vals - (appender vals (recur cars2 cdrs2)))))))) - - ;; Fast path - (if (null-list? lis1) '() - (let recur ((elt (car lis1)) (rest (cdr lis1))) - (let ((vals (f elt))) - (if (null-list? rest) vals - (appender vals (recur (car rest) (cdr rest))))))))) - - -(define (pair-for-each proc lis1 . lists) -; (check-arg procedure? proc pair-for-each) - (if (pair? lists) - - (let lp ((lists (cons lis1 lists))) - (let ((tails (##srfi1#cdrs lists))) - (if (pair? tails) - (begin (apply proc lists) - (lp tails))))) - - ;; Fast path. - (let lp ((lis lis1)) - (if (not (null-list? lis)) - (let ((tail (cdr lis))) ; Grab the cdr now, - (proc lis) ; in case PROC SET-CDR!s LIS. - (lp tail)))))) - -;;; We stop when LIS1 runs out, not when any list runs out. -(define (map! f lis1 . lists) -; (check-arg procedure? f map!) - (if (pair? lists) - (let lp ((lis1 lis1) (lists lists)) - (if (not (null-list? lis1)) - (receive (heads tails) (##srfi1#cars+cdrs/no-test lists) - (set-car! lis1 (apply f (car lis1) heads)) - (lp (cdr lis1) tails)))) - - ;; Fast path. - (pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1)) - lis1) - - -;;; Map F across L, and save up all the non-false results. -(define (filter-map f lis1 . lists) -; (check-arg procedure? f filter-map) - (if (pair? lists) - (let recur ((lists (cons lis1 lists))) - (receive (cars cdrs) (##srfi1#cars+cdrs lists) - (if (pair? cars) - (cond ((apply f cars) => (lambda (x) (cons x (recur cdrs)))) - (else (recur cdrs))) ; Tail call in this arm. - '()))) - - ;; Fast path. - (let recur ((lis lis1)) - (if (null-list? lis) lis - (let ((tail (recur (cdr lis)))) - (cond ((f (car lis)) => (lambda (x) (cons x tail))) - (else tail))))))) - - -;;; Map F across lists, guaranteeing to go left-to-right. -;;; NOTE: Some implementations of R5RS MAP are compliant with this spec; -;;; in which case this procedure may simply be defined as a synonym for MAP. - -(define (map-in-order f lis1 . lists) -; (check-arg procedure? f map-in-order) - (if (pair? lists) - (let recur ((lists (cons lis1 lists))) - (receive (cars cdrs) (##srfi1#cars+cdrs lists) - (if (pair? cars) - (let ((x (apply f cars))) ; Do head first, - (cons x (recur cdrs))) ; then tail. - '()))) - - ;; Fast path. - (let recur ((lis lis1)) - (if (null-list? lis) lis - (let ((tail (cdr lis)) - (x (f (car lis)))) ; Do head first, - (cons x (recur tail))))))) ; then tail. - - -;;; We extend MAP to handle arguments of unequal length. -(define map map-in-order) - - -;;; filter, remove, partition -;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;;; FILTER, REMOVE, PARTITION and their destructive counterparts do not -;;; disorder the elements of their argument. - -;; This FILTER shares the longest tail of L that has no deleted elements. -;; If Scheme had multi-continuation calls, they could be made more efficient. - -(define (filter pred lis) ; Sleazing with EQ? makes this -; (check-arg procedure? pred filter) ; one faster. - (let recur ((lis lis)) - (if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists. - (let ((head (car lis)) - (tail (cdr lis))) - (if (pred head) - (let ((new-tail (recur tail))) ; Replicate the RECUR call so - (if (eq? tail new-tail) lis - (cons head new-tail))) - (recur tail)))))) ; this one can be a tail call. - - -;;; Another version that shares longest tail. -;(define (filter pred lis) -; (receive (ans no-del?) -; ;; (recur l) returns L with (pred x) values filtered. -; ;; It also returns a flag NO-DEL? if the returned value -; ;; is EQ? to L, i.e. if it didn't have to delete anything. -; (let recur ((l l)) -; (if (null-list? l) (values l #t) -; (let ((x (car l)) -; (tl (cdr l))) -; (if (pred x) -; (receive (ans no-del?) (recur tl) -; (if no-del? -; (values l #t) -; (values (cons x ans) #f))) -; (receive (ans no-del?) (recur tl) ; Delete X. -; (values ans #f)))))) -; ans)) - - - -;(define (filter! pred lis) ; Things are much simpler -; (let recur ((lis lis)) ; if you are willing to -; (if (pair? lis) ; push N stack frames & do N -; (cond ((pred (car lis)) ; SET-CDR! writes, where N is -; (set-cdr! lis (recur (cdr lis))); the length of the answer. -; lis) -; (else (recur (cdr lis)))) -; lis))) - - -;;; This implementation of FILTER! -;;; - doesn't cons, and uses no stack; -;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are -;;; usually expensive on modern machines, and can be extremely expensive on -;;; modern Schemes (e.g., ones that have generational GC's). -;;; It just zips down contiguous runs of in and out elts in LIS doing the -;;; minimal number of SET-CDR!s to splice the tail of one run of ins to the -;;; beginning of the next. - -(define (filter! pred lis) -; (check-arg procedure? pred filter!) - (let lp ((ans lis)) - (cond ((null-list? ans) ans) ; Scan looking for - ((not (pred (car ans))) (lp (cdr ans))) ; first cons of result. - - ;; ANS is the eventual answer. - ;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED. - ;; Scan over a contiguous segment of the list that - ;; satisfies PRED. - ;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous - ;; segment of the list that *doesn't* satisfy PRED. - ;; When the segment ends, patch in a link from PREV - ;; to the start of the next good segment, and jump to - ;; SCAN-IN. - (else (letrec ((scan-in (lambda (prev lis) - (if (pair? lis) - (if (pred (car lis)) - (scan-in lis (cdr lis)) - (scan-out prev (cdr lis)))))) - (scan-out (lambda (prev lis) - (let lp ((lis lis)) - (if (pair? lis) - (if (pred (car lis)) - (begin (set-cdr! prev lis) - (scan-in lis (cdr lis))) - (lp (cdr lis))) - (set-cdr! prev lis)))))) - (scan-in ans (cdr ans)) - ans))))) - - -;;; This version does not share common tails like the reference impl does. -;;; Kindly suggested by Joerg Wittenberger on 20-05-2013. - -(define (partition pred lst) -; (check-arg procedure? pred partition) - (let ((t (cons #f '())) - (f (cons #f '()))) - (let ((tl t) (fl f)) - (do ((lst lst (cdr lst))) - ((null? lst) (values (cdr t) (cdr f))) - (let ((elt (car lst))) - (if (pred elt) - (let ((p (cons elt (cdr tl)))) - (set-cdr! tl p) - (set! tl p)) - (let ((p (cons elt (cdr fl)))) - (set-cdr! fl p) - (set! fl p)))))))) - - -;(define (partition! pred lis) ; Things are much simpler -; (let recur ((lis lis)) ; if you are willing to -; (if (null-list? lis) (values lis lis) ; push N stack frames & do N -; (let ((elt (car lis))) ; SET-CDR! writes, where N is -; (receive (in out) (recur (cdr lis)) ; the length of LIS. -; (cond ((pred elt) -; (set-cdr! lis in) -; (values lis out)) -; (else (set-cdr! lis out) -; (values in lis)))))))) - - -;;; This implementation of PARTITION! -;;; - doesn't cons, and uses no stack; -;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are -;;; usually expensive on modern machines, and can be extremely expensive on -;;; modern Schemes (e.g., ones that have generational GC's). -;;; It just zips down contiguous runs of in and out elts in LIS doing the -;;; minimal number of SET-CDR!s to splice these runs together into the result -;;; lists. - -(define (partition! pred lis) -; (check-arg procedure? pred partition!) - (if (null-list? lis) (values lis lis) - - ;; This pair of loops zips down contiguous in & out runs of the - ;; list, splicing the runs together. The invariants are - ;; SCAN-IN: (cdr in-prev) = LIS. - ;; SCAN-OUT: (cdr out-prev) = LIS. - (letrec ((scan-in (lambda (in-prev out-prev lis) - (let lp ((in-prev in-prev) (lis lis)) - (if (pair? lis) - (if (pred (car lis)) - (lp lis (cdr lis)) - (begin (set-cdr! out-prev lis) - (scan-out in-prev lis (cdr lis)))) - (set-cdr! out-prev lis))))) ; Done. - - (scan-out (lambda (in-prev out-prev lis) - (let lp ((out-prev out-prev) (lis lis)) - (if (pair? lis) - (if (pred (car lis)) - (begin (set-cdr! in-prev lis) - (scan-in lis out-prev (cdr lis))) - (lp lis (cdr lis))) - (set-cdr! in-prev lis)))))) ; Done. - - ;; Crank up the scan&splice loops. - (if (pred (car lis)) - ;; LIS begins in-list. Search for out-list's first pair. - (let lp ((prev-l lis) (l (cdr lis))) - (cond ((not (pair? l)) (values lis l)) - ((pred (car l)) (lp l (cdr l))) - (else (scan-out prev-l l (cdr l)) - (values lis l)))) ; Done. - - ;; LIS begins out-list. Search for in-list's first pair. - (let lp ((prev-l lis) (l (cdr lis))) - (cond ((not (pair? l)) (values l lis)) - ((pred (car l)) - (scan-in l prev-l (cdr l)) - (values l lis)) ; Done. - (else (lp l (cdr l))))))))) - - -;;; Inline us, please. -(define (remove pred l) (filter (lambda (x) (not (pred x))) l)) -(define (remove! pred l) (filter! (lambda (x) (not (pred x))) l)) - - - -;;; Here's the taxonomy for the DELETE/ASSOC/MEMBER functions. -;;; (I don't actually think these are the world's most important -;;; functions -- the procedural FILTER/REMOVE/FIND/FIND-TAIL variants -;;; are far more general.) -;;; -;;; Function Action -;;; --------------------------------------------------------------------------- -;;; remove pred lis Delete by general predicate -;;; delete x lis [=] Delete by element comparison -;;; -;;; find pred lis Search by general predicate -;;; find-tail pred lis Search by general predicate -;;; member x lis [=] Search by element comparison -;;; -;;; assoc key lis [=] Search alist by key comparison -;;; alist-delete key alist [=] Alist-delete by key comparison - -(define (delete x lis . maybe-=) - (let ((= (optional maybe-= equal?))) - (filter (lambda (y) (not (= x y))) lis))) - -(define (delete! x lis . maybe-=) - (let ((= (optional maybe-= equal?))) - (filter! (lambda (y) (not (= x y))) lis))) - -;;; Extended from R4RS to take an optional comparison argument. -(define (member x lis . maybe-=) - (let ((= (optional maybe-= equal?))) - (find-tail (lambda (y) (= x y)) lis))) - -;;; R4RS, hence we don't bother to define. -;;; The MEMBER and then FIND-TAIL call should definitely -;;; be inlined for MEMQ & MEMV. -;(define (memq x lis) (member x lis eq?)) -;(define (memv x lis) (member x lis eqv?)) - - -;;; right-duplicate deletion -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;;; delete-duplicates delete-duplicates! -;;; -;;; Beware -- these are N^2 algorithms. To efficiently remove duplicates -;;; in long lists, sort the list to bring duplicates together, then use a -;;; linear-time algorithm to kill the dups. Or use an algorithm based on -;;; element-marking. The former gives you O(n lg n), the latter is linear. - -(define (delete-duplicates lis . maybe-=) - (let ((elt= (optional maybe-= equal?))) -; (check-arg procedure? elt= delete-duplicates) - (let recur ((lis lis)) - (if (null-list? lis) lis - (let* ((x (car lis)) - (tail (cdr lis)) - (new-tail (recur (delete x tail elt=)))) - (if (eq? tail new-tail) lis (cons x new-tail))))))) - -(define (delete-duplicates! lis . maybe-=) - (let ((elt= (optional maybe-= equal?))) -; (check-arg procedure? elt= delete-duplicates!) - (let recur ((lis lis)) - (if (null-list? lis) lis - (let* ((x (car lis)) - (tail (cdr lis)) - (new-tail (recur (delete! x tail elt=)))) - (if (eq? tail new-tail) lis (cons x new-tail))))))) - - -;;; alist stuff -;;;;;;;;;;;;;;; - -;;; Extended from R4RS to take an optional comparison argument. -(define (assoc x lis . maybe-=) - (let ((= (optional maybe-= equal?))) - (find (lambda (entry) (= x (car entry))) lis))) - -(define (alist-cons key datum alist) (cons (cons key datum) alist)) - -(define (alist-copy alist) - (##sys#map (lambda (elt) (cons (car elt) (cdr elt))) - alist)) - -(define (alist-delete key alist . maybe-=) - (let ((= (optional maybe-= equal?))) - (filter (lambda (elt) (not (= key (car elt)))) alist))) - -(define (alist-delete! key alist . maybe-=) - (let ((= (optional maybe-= equal?))) - (filter! (lambda (elt) (not (= key (car elt)))) alist))) - - -;;; find find-tail take-while drop-while span break any every list-index -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -(define (find pred list) - (cond ((find-tail pred list) => car) - (else #f))) - -(define (find-tail pred list) -; (check-arg procedure? pred find-tail) - (let lp ((list list)) - (and (not (null-list? list)) - (if (pred (car list)) list - (lp (cdr list)))))) - -(define (take-while pred lis) -; (check-arg procedure? pred take-while) - (let recur ((lis lis)) - (if (null-list? lis) '() - (let ((x (car lis))) - (if (pred x) - (cons x (recur (cdr lis))) - '()))))) - -(define (drop-while pred lis) -; (check-arg procedure? pred drop-while) - (let lp ((lis lis)) - (if (null-list? lis) '() - (if (pred (car lis)) - (lp (cdr lis)) - lis)))) - -(define (take-while! pred lis) -; (check-arg procedure? pred take-while!) - (if (or (null-list? lis) (not (pred (car lis)))) '() - (begin (let lp ((prev lis) (rest (cdr lis))) - (if (pair? rest) - (let ((x (car rest))) - (if (pred x) (lp rest (cdr rest)) - (set-cdr! prev '()))))) - lis))) - -(define (span pred lis) -; (check-arg procedure? pred span) - (let recur ((lis lis)) - (if (null-list? lis) (values '() '()) - (let ((x (car lis))) - (if (pred x) - (receive (prefix suffix) (recur (cdr lis)) - (values (cons x prefix) suffix)) - (values '() lis)))))) - -(define (span! pred lis) -; (check-arg procedure? pred span!) - (if (or (null-list? lis) (not (pred (car lis)))) (values '() lis) - (let ((suffix (let lp ((prev lis) (rest (cdr lis))) - (if (null-list? rest) rest - (let ((x (car rest))) - (if (pred x) (lp rest (cdr rest)) - (begin (set-cdr! prev '()) - rest))))))) - (values lis suffix)))) - - -(define (break pred lis) (span (lambda (x) (not (pred x))) lis)) -(define (break! pred lis) (span! (lambda (x) (not (pred x))) lis)) - -(define (any pred lis1 . lists) -; (check-arg procedure? pred any) - (if (pair? lists) - - ;; N-ary case - (receive (heads tails) (##srfi1#cars+cdrs (cons lis1 lists)) - (and (pair? heads) - (let lp ((heads heads) (tails tails)) - (receive (next-heads next-tails) (##srfi1#cars+cdrs tails) - (if (pair? next-heads) - (or (apply pred heads) (lp next-heads next-tails)) - (apply pred heads)))))) ; Last PRED app is tail call. - - ;; Fast path - (and (not (null-list? lis1)) - (let lp ((head (car lis1)) (tail (cdr lis1))) - (if (null-list? tail) - (pred head) ; Last PRED app is tail call. - (or (pred head) (lp (car tail) (cdr tail)))))))) - - -;(define (every pred list) ; Simple definition. -; (let lp ((list list)) ; Doesn't return the last PRED value. -; (or (not (pair? list)) -; (and (pred (car list)) -; (lp (cdr list)))))) - -(define (every pred lis1 . lists) -; (check-arg procedure? pred every) - (if (pair? lists) - - ;; N-ary case - (receive (heads tails) (##srfi1#cars+cdrs (cons lis1 lists)) - (or (not (pair? heads)) - (let lp ((heads heads) (tails tails)) - (receive (next-heads next-tails) (##srfi1#cars+cdrs tails) - (if (pair? next-heads) - (and (apply pred heads) (lp next-heads next-tails)) - (apply pred heads)))))) ; Last PRED app is tail call. - - ;; Fast path - (or (null-list? lis1) - (let lp ((head (car lis1)) (tail (cdr lis1))) - (if (null-list? tail) - (pred head) ; Last PRED app is tail call. - (and (pred head) (lp (car tail) (cdr tail)))))))) - -(define (list-index pred lis1 . lists) -; (check-arg procedure? pred list-index) - (if (pair? lists) - - ;; N-ary case - (let lp ((lists (cons lis1 lists)) (n 0)) - (receive (heads tails) (##srfi1#cars+cdrs lists) - (and (pair? heads) - (if (apply pred heads) n - (lp tails (fx+ n 1)))))) - - ;; Fast path - (let lp ((lis lis1) (n 0)) - (and (not (null-list? lis)) - (if (pred (car lis)) n (lp (cdr lis) (fx+ n 1))))))) - -;;; Reverse -;;;;;;;;;;; - -;R4RS, so not defined here. -;(define (reverse lis) (fold cons '() lis)) - -;(define (reverse! lis) -; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair) '() lis)) - -(define (reverse! lis) - (let lp ((lis lis) (ans '())) - (if (null-list? lis) ans - (let ((tail (cdr lis))) - (set-cdr! lis ans) - (lp tail lis))))) - -;;; Lists-as-sets -;;;;;;;;;;;;;;;;; - -;;; This is carefully tuned code; do not modify casually. -;;; - It is careful to share storage when possible; -;;; - Side-effecting code tries not to perform redundant writes. -;;; - It tries to avoid linear-time scans in special cases where constant-time -;;; computations can be performed. -;;; - It relies on similar properties from the other list-lib procs it calls. -;;; For example, it uses the fact that the implementations of MEMBER and -;;; FILTER in this source code share longest common tails between args -;;; and results to get structure sharing in the lset procedures. - -(define (##srfi1#lset2<= = lis1 lis2) (every (lambda (x) (member x lis2 =)) lis1)) - -(define (lset<= = . lists) -; (check-arg procedure? = lset<=) - (##sys#check-closure = 'lset<=) - (or (not (pair? lists)) ; 0-ary case - (let lp ((s1 (car lists)) (rest (cdr lists))) - (or (not (pair? rest)) - (let ((s2 (car rest)) (rest (cdr rest))) - (and (or (eq? s2 s1) ; Fast path - (##srfi1#lset2<= = s1 s2)) ; Real test - (lp s2 rest))))))) - -(define (lset= = . lists) -; (check-arg procedure? = lset=) - (##sys#check-closure = 'lset=) - (or (not (pair? lists)) ; 0-ary case - (let lp ((s1 (car lists)) (rest (cdr lists))) - (or (not (pair? rest)) - (let ((s2 (car rest)) - (rest (cdr rest))) - (and (or (eq? s1 s2) ; Fast path - (and (##srfi1#lset2<= = s1 s2) (##srfi1#lset2<= = s2 s1))) ; Real test - (lp s2 rest))))))) - - -(define (lset-adjoin = lis . elts) -; (check-arg procedure? = lset-adjoin) - (##sys#check-closure = 'lset-adjoin) - (fold (lambda (elt ans) (if (member elt ans =) ans (cons elt ans))) - lis elts)) - - -(define (lset-union = . lists) -; (check-arg procedure? = lset-union) - (##sys#check-closure = 'lset-union) - (reduce (lambda (lis ans) ; Compute ANS + LIS. - (cond ((null? lis) ans) ; Don't copy any lists - ((null? ans) lis) ; if we don't have to. - ((eq? lis ans) ans) - (else - (fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans) - ans - (cons elt ans))) - ans lis)))) - '() lists)) - -(define (lset-union! = . lists) -; (check-arg procedure? = lset-union!) - (##sys#check-closure = 'lset-union!) - (reduce (lambda (lis ans) ; Splice new elts of LIS onto the front of ANS. - (cond ((null? lis) ans) ; Don't copy any lists - ((null? ans) lis) ; if we don't have to. - ((eq? lis ans) ans) - (else - (pair-fold (lambda (pair ans) - (let ((elt (car pair))) - (if (any (lambda (x) (= x elt)) ans) - ans - (begin (set-cdr! pair ans) pair)))) - ans lis)))) - '() lists)) - - -(define (lset-intersection = lis1 . lists) -; (check-arg procedure? = lset-intersection) - (##sys#check-closure = 'lset-intersection) - (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals. - (cond ((any null-list? lists) '()) ; Short cut - ((null? lists) lis1) ; Short cut - (else (filter (lambda (x) - (every (lambda (lis) (member x lis =)) lists)) - lis1))))) - -(define (lset-intersection! = lis1 . lists) -; (check-arg procedure? = lset-intersection!) - (##sys#check-closure = 'lset-intersection!) - (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals. - (cond ((any null-list? lists) '()) ; Short cut - ((null? lists) lis1) ; Short cut - (else (filter! (lambda (x) - (every (lambda (lis) (member x lis =)) lists)) - lis1))))) - - -(define (lset-difference = lis1 . lists) -; (check-arg procedure? = lset-difference) - (##sys#check-closure = 'lset-difference) - (let ((lists (filter pair? lists))) ; Throw out empty lists. - (cond ((null? lists) lis1) ; Short cut - ((memq lis1 lists) '()) ; Short cut - (else (filter (lambda (x) - (every (lambda (lis) (not (member x lis =))) - lists)) - lis1))))) - -(define (lset-difference! = lis1 . lists) -; (check-arg procedure? = lset-difference!) - (##sys#check-closure = 'lset-difference!) - (let ((lists (filter pair? lists))) ; Throw out empty lists. - (cond ((null? lists) lis1) ; Short cut - ((memq lis1 lists) '()) ; Short cut - (else (filter! (lambda (x) - (every (lambda (lis) (not (member x lis =))) - lists)) - lis1))))) - - -(define (lset-xor = . lists) -; (check-arg procedure? = lset-xor) - (##sys#check-closure = 'lset-xor) - (reduce (lambda (b a) ; Compute A xor B: - ;; Note that this code relies on the constant-time - ;; short-cuts provided by LSET-DIFF+INTERSECTION, - ;; LSET-DIFFERENCE & APPEND to provide constant-time short - ;; cuts for the cases A = (), B = (), and A eq? B. It takes - ;; a careful case analysis to see it, but it's carefully - ;; built in. - - ;; Compute a-b and a^b, then compute b-(a^b) and - ;; cons it onto the front of a-b. - (receive (a-b a-int-b) (lset-diff+intersection = a b) - (cond ((null? a-b) (lset-difference = b a)) - ((null? a-int-b) (append b a)) - (else (fold (lambda (xb ans) - (if (member xb a-int-b =) ans (cons xb ans))) - a-b - b))))) - '() lists)) - - -(define (lset-xor! = . lists) -; (check-arg procedure? = lset-xor!) - (##sys#check-closure = 'lset-xor!) - (reduce (lambda (b a) ; Compute A xor B: - ;; Note that this code relies on the constant-time - ;; short-cuts provided by LSET-DIFF+INTERSECTION, - ;; LSET-DIFFERENCE & APPEND to provide constant-time short - ;; cuts for the cases A = (), B = (), and A eq? B. It takes - ;; a careful case analysis to see it, but it's carefully - ;; built in. - - ;; Compute a-b and a^b, then compute b-(a^b) and - ;; cons it onto the front of a-b. - (receive (a-b a-int-b) (lset-diff+intersection! = a b) - (cond ((null? a-b) (lset-difference! = b a)) - ((null? a-int-b) (append! b a)) - (else (pair-fold (lambda (b-pair ans) - (if (member (car b-pair) a-int-b =) ans - (begin (set-cdr! b-pair ans) b-pair))) - a-b - b))))) - '() lists)) - - -(define (lset-diff+intersection = lis1 . lists) -; (check-arg procedure? = lset-diff+intersection) - (##sys#check-closure = 'lset-diff+intersection) - (cond ((every null-list? lists) (values lis1 '())) ; Short cut - ((memq lis1 lists) (values '() lis1)) ; Short cut - (else (partition (lambda (elt) - (not (any (lambda (lis) (member elt lis =)) - lists))) - lis1)))) - -(define (lset-diff+intersection! = lis1 . lists) -; (check-arg procedure? = lset-diff+intersection!) - (##sys#check-closure = 'lset-diff+intersection!) - (cond ((every null-list? lists) (values lis1 '())) ; Short cut - ((memq lis1 lists) (values '() lis1)) ; Short cut - (else (partition! (lambda (elt) - (not (any (lambda (lis) (member elt lis =)) - lists))) - lis1))))Trap