~ chicken-core (master) /tests/matchable.scm
Trap1;;;; matchable.scm -- portable hygienic pattern matcher
2;;
3;; This code is written by Alex Shinn and placed in the
4;; Public Domain. All warranties are disclaimed.
5
6;; Written in fully portable SYNTAX-RULES, with a few non-portable
7;; bits at the end of the file conditioned out with COND-EXPAND.
8
9;; This is a simple generative pattern matcher - each pattern is
10;; expanded into the required tests, calling a failure continuation if
11;; the tests pass. This makes the logic easy to follow and extend,
12;; but produces sub-optimal code in cases where you have many similar
13;; clauses due to repeating the same tests. Nonetheless a smart
14;; compiler should be able to remove the redundant tests. For
15;; MATCH-LET and DESTRUCTURING-BIND type uses there is no performance
16;; hit.
17
18;; 2008/03/20 - fixing bug where (a ...) matched non-lists
19;; 2008/03/15 - removing redundant check in vector patterns
20;; 2007/09/04 - fixing quasiquote patterns
21;; 2007/07/21 - allowing ellipse patterns in non-final list positions
22;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipse
23;; (thanks to Taylor Campbell)
24;; 2007/04/08 - clean up, commenting
25;; 2006/12/24 - bugfixes
26;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
27
28;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
29
30;; This is always passed a message, yet won't match the message, and
31;; thus always results in a compile-time error.
32
33(define-syntax match-syntax-error
34 (syntax-rules ()
35 ((_)
36 (match-syntax-error "invalid match-syntax-error usage"))))
37
38;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39
40;; The basic interface. MATCH just performs some basic syntax
41;; validation, binds the match expression to a temporary variable, and
42;; passes it on to MATCH-NEXT.
43
44(define-syntax match
45 (syntax-rules ()
46 ((match)
47 (match-syntax-error "missing match expression"))
48 ((match atom)
49 (match-syntax-error "missing match clause"))
50 ((match (app ...) (pat . body) ...)
51 (let ((v (app ...)))
52 (match-next v (app ...) (set! (app ...)) (pat . body) ...)))
53 ((match #(vec ...) (pat . body) ...)
54 (let ((v #(vec ...)))
55 (match-next v v (set! v) (pat . body) ...)))
56 ((match atom (pat . body) ...)
57 (match-next atom atom (set! atom) (pat . body) ...))
58 ))
59
60;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
61;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
62;; clauses.
63
64(define-syntax match-next
65 (syntax-rules (=>)
66 ;; no more clauses, the match failed
67 ((match-next v g s)
68 (error 'match "no matching pattern"))
69 ;; named failure continuation
70 ((match-next v g s (pat (=> failure) . body) . rest)
71 (let ((failure (lambda () (match-next v g s . rest))))
72 ;; match-one analyzes the pattern for us
73 (match-one v pat g s (match-drop-ids (begin . body)) (failure) ())))
74 ;; anonymous failure continuation, give it a dummy name
75 ((match-next v g s (pat . body) . rest)
76 (match-next v g s (pat (=> failure) . body) . rest))))
77
78;; MATCH-ONE first checks for ellipse patterns, otherwise passes on to
79;; MATCH-TWO.
80
81(define-syntax match-one
82 (syntax-rules ()
83 ;; If it's a list of two values, check to see if the second one is
84 ;; an ellipse and handle accordingly, otherwise go to MATCH-TWO.
85 ((match-one v (p q . r) g s sk fk i)
86 (match-check-ellipse
87 q
88 (match-extract-vars p (match-gen-ellipses v p r g s sk fk i) i ())
89 (match-two v (p q . r) g s sk fk i)))
90 ;; Otherwise, go directly to MATCH-TWO.
91 ((match-one . x)
92 (match-two . x))))
93
94;; This is the guts of the pattern matcher. We are passed a lot of
95;; information in the form:
96;;
97;; (match-two var pattern getter setter success-k fail-k (ids ...))
98;;
99;; where VAR is the symbol name of the current variable we are
100;; matching, PATTERN is the current pattern, getter and setter are the
101;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
102;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
103;; continuation (which is just a thunk call and is thus safe to expand
104;; multiple times) and IDS are the list of identifiers bound in the
105;; pattern so far.
106
107(define-syntax match-two
108 (syntax-rules (_ ___ quote quasiquote ? $ = and or not set! get!)
109 ((match-two v () g s (sk ...) fk i)
110 (if (null? v) (sk ... i) fk))
111 ((match-two v (quote p) g s (sk ...) fk i)
112 (if (equal? v 'p) (sk ... i) fk))
113 ((match-two v (quasiquote p) g s sk fk i)
114 (match-quasiquote v p g s sk fk i))
115 ((match-two v (and) g s (sk ...) fk i) (sk ... i))
116 ((match-two v (and p q ...) g s sk fk i)
117 (match-one v p g s (match-one v (and q ...) g s sk fk) fk i))
118 ((match-two v (or) g s sk fk i) fk)
119 ((match-two v (or p) g s sk fk i)
120 (match-one v p g s sk fk i))
121 ((match-two v (or p ...) g s sk fk i)
122 (match-extract-vars (or p ...)
123 (match-gen-or v (p ...) g s sk fk i)
124 i
125 ()))
126 ((match-two v (not p) g s (sk ...) fk i)
127 (match-one v p g s (match-drop-ids fk) (sk ... i) i))
128 ((match-two v (get! getter) g s (sk ...) fk i)
129 (let ((getter (lambda () g))) (sk ... i)))
130 ((match-two v (set! setter) g (s ...) (sk ...) fk i)
131 (let ((setter (lambda (x) (s ... x)))) (sk ... i)))
132 ((match-two v (? pred p ...) g s sk fk i)
133 (if (pred v) (match-one v (and p ...) g s sk fk i) fk))
134 ((match-two v (= proc p) g s sk fk i)
135 (let ((w (proc v)))
136 (match-one w p g s sk fk i)))
137 ((match-two v (p ___ . r) g s sk fk i)
138 (match-extract-vars p (match-gen-ellipses v p r g s sk fk i) i ()))
139 ((match-two v (p) g s sk fk i)
140 (if (and (pair? v) (null? (cdr v)))
141 (let ((w (car v)))
142 (match-one w p (car v) (set-car! v) sk fk i))
143 fk))
144 ((match-two v (p . q) g s sk fk i)
145 (if (pair? v)
146 (let ((w (car v)) (x (cdr v)))
147 (match-one w p (car v) (set-car! v)
148 (match-one x q (cdr v) (set-cdr! v) sk fk)
149 fk
150 i))
151 fk))
152 ((match-two v #(p ...) g s sk fk i)
153 (match-vector v 0 () (p ...) sk fk i))
154 ((match-two v _ g s (sk ...) fk i) (sk ... i))
155 ;; Not a pair or vector or special literal, test to see if it's a
156 ;; new symbol, in which case we just bind it, or if it's an
157 ;; already bound symbol or some other literal, in which case we
158 ;; compare it with EQUAL?.
159 ((match-two v x g s (sk ...) fk (id ...))
160 (let-syntax
161 ((new-sym?
162 (syntax-rules (id ...)
163 ((new-sym? x sk2 fk2) sk2)
164 ((new-sym? y sk2 fk2) fk2))))
165 (new-sym? abracadabra ; thanks Oleg
166 (let ((x v)) (sk ... (id ... x)))
167 (if (equal? v x) (sk ... (id ...)) fk))))
168 ))
169
170;; QUASIQUOTE patterns
171
172(define-syntax match-quasiquote
173 (syntax-rules (unquote unquote-splicing quasiquote)
174 ((_ v (unquote p) g s sk fk i)
175 (match-one v p g s sk fk i))
176 ((_ v ((unquote-splicing p) . rest) g s sk fk i)
177 (if (pair? v)
178 (match-one v
179 (p . tmp)
180 (match-quasiquote tmp rest g s sk fk)
181 fk
182 i)
183 fk))
184 ((_ v (quasiquote p) g s sk fk i . depth)
185 (match-quasiquote v p g s sk fk i #f . depth))
186 ((_ v (unquote p) g s sk fk i x . depth)
187 (match-quasiquote v p g s sk fk i . depth))
188 ((_ v (unquote-splicing p) g s sk fk i x . depth)
189 (match-quasiquote v p g s sk fk i . depth))
190 ((_ v (p . q) g s sk fk i . depth)
191 (if (pair? v)
192 (let ((w (car v)) (x (cdr v)))
193 (match-quasiquote
194 w p g s
195 (match-quasiquote-step x q g s sk fk depth)
196 fk i . depth))
197 fk))
198 ((_ v #(elt ...) g s sk fk i . depth)
199 (if (vector? v)
200 (let ((ls (vector->list v)))
201 (match-quasiquote ls (elt ...) g s sk fk i . depth))
202 fk))
203 ((_ v x g s sk fk i . depth)
204 (match-one v 'x g s sk fk i))))
205
206(define-syntax match-quasiquote-step
207 (syntax-rules ()
208 ((match-quasiquote-step x q g s sk fk depth i)
209 (match-quasiquote x q g s sk fk i . depth))
210 ))
211
212;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
213;; Utilities
214
215;; A CPS utility that takes two values and just expands into the
216;; first.
217(define-syntax match-drop-ids
218 (syntax-rules ()
219 ((_ expr ids ...) expr)))
220
221;; Generating OR clauses just involves binding the success
222;; continuation into a thunk which takes the identifiers common to
223;; each OR clause, and trying each clause, calling the thunk as soon
224;; as we succeed.
225
226(define-syntax match-gen-or
227 (syntax-rules ()
228 ((_ v p g s (sk ...) fk (i ...) ((id id-ls) ...))
229 (let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
230 (match-gen-or-step
231 v p g s (match-drop-ids (sk2 id ...)) fk (i ...))))))
232
233(define-syntax match-gen-or-step
234 (syntax-rules ()
235 ((_ v () g s sk fk i)
236 ;; no OR clauses, call the failure continuation
237 fk)
238 ((_ v (p) g s sk fk i)
239 ;; last (or only) OR clause, just expand normally
240 (match-one v p g s sk fk i))
241 ((_ v (p . q) g s sk fk i)
242 ;; match one and try the remaining on failure
243 (match-one v p g s sk (match-gen-or-step v q g s sk fk i) i))
244 ))
245
246;; We match a pattern (p ...) by matching the pattern p in a loop on
247;; each element of the variable, accumulating the bound ids into lists
248
249;; Look at the body - it's just a named let loop, matching each
250;; element in turn to the same pattern. This illustrates the
251;; simplicity of this generative-style pattern matching. It would be
252;; just as easy to implement a tree searching pattern.
253
254(define-syntax match-gen-ellipses
255 (syntax-rules ()
256 ((_ v p () g s (sk ...) fk i ((id id-ls) ...))
257 (match-check-identifier p
258 (let ((p v))
259 (if (list? p)
260 (sk ... i)
261 fk))
262 (let loop ((ls v) (id-ls '()) ...)
263 (cond
264 ((null? ls)
265 (let ((id (reverse id-ls)) ...) (sk ... i)))
266 ((pair? ls)
267 (let ((w (car ls)))
268 (match-one w p (car ls) (set-car! ls)
269 (match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
270 fk i)))
271 (else
272 fk)))))
273 ((_ v p (r ...) g s (sk ...) fk i ((id id-ls) ...))
274 (match-verify-no-ellipses
275 (r ...)
276 (let* ((tail-len (length '(r ...)))
277 (ls v)
278 (len (length ls)))
279 (if (< len tail-len)
280 fk
281 (let loop ((ls ls) (n len) (id-ls '()) ...)
282 (cond
283 ((= n tail-len)
284 (let ((id (reverse id-ls)) ...)
285 (match-one ls (r ...) #f #f (sk ... i) fk i)))
286 ((pair? ls)
287 (let ((w (car ls)))
288 (match-one w p (car ls) (set-car! ls)
289 (match-drop-ids
290 (loop (cdr ls) (- n 1) (cons id id-ls) ...))
291 fk
292 i)))
293 (else
294 fk)))))))
295 ))
296
297(define-syntax match-verify-no-ellipses
298 (syntax-rules ()
299 ((_ (x . y) sk)
300 (match-check-ellipse
301 x
302 (match-syntax-error
303 "multiple ellipse patterns not allowed at same level")
304 (match-verify-no-ellipses y sk)))
305 ((_ x sk) sk)
306 ))
307
308;; Vector patterns are just more of the same, with the slight
309;; exception that we pass around the current vector index being
310;; matched.
311
312(define-syntax match-vector
313 (syntax-rules (___)
314 ((_ v n pats (p q) sk fk i)
315 (match-check-ellipse q
316 (match-vector-ellipses v n pats p sk fk i)
317 (match-vector-two v n pats (p q) sk fk i)))
318 ((_ v n pats (p ___) sk fk i)
319 (match-vector-ellipses v n pats p sk fk i))
320 ((_ . x)
321 (match-vector-two . x))))
322
323;; Check the exact vector length, then check each element in turn.
324
325(define-syntax match-vector-two
326 (syntax-rules ()
327 ((_ v n ((pat index) ...) () sk fk i)
328 (if (vector? v)
329 (let ((len (vector-length v)))
330 (if (= len n)
331 (match-vector-step v ((pat index) ...) sk fk i)
332 fk))
333 fk))
334 ((_ v n (pats ...) (p . q) sk fk i)
335 (match-vector v (+ n 1) (pats ... (p n)) q sk fk i))
336 ))
337
338(define-syntax match-vector-step
339 (syntax-rules ()
340 ((_ v () (sk ...) fk i) (sk ... i))
341 ((_ v ((pat index) . rest) sk fk i)
342 (let ((w (vector-ref v index)))
343 (match-one w pat (vector-ref v index) (vector-set! v index)
344 (match-vector-step v rest sk fk)
345 fk i)))))
346
347;; With a vector ellipse pattern we first check to see if the vector
348;; length is at least the required length.
349
350(define-syntax match-vector-ellipses
351 (syntax-rules ()
352 ((_ v n ((pat index) ...) p sk fk i)
353 (if (vector? v)
354 (let ((len (vector-length v)))
355 (if (>= len n)
356 (match-vector-step v ((pat index) ...)
357 (match-vector-tail v p n len sk fk)
358 fk i)
359 fk))
360 fk))))
361
362(define-syntax match-vector-tail
363 (syntax-rules ()
364 ((_ v p n len sk fk i)
365 (match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
366
367(define-syntax match-vector-tail-two
368 (syntax-rules ()
369 ((_ v p n len (sk ...) fk i ((id id-ls) ...))
370 (let loop ((j n) (id-ls '()) ...)
371 (if (>= j len)
372 (let ((id (reverse id-ls)) ...) (sk ... i))
373 (let ((w (vector-ref v j)))
374 (match-one w p (vector-ref v j) (vetor-set! v j)
375 (match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
376 fk i)))))))
377
378;; Extract all identifiers in a pattern. A little more complicated
379;; than just looking for symbols, we need to ignore special keywords
380;; and not pattern forms (such as the predicate expression in ?
381;; patterns).
382;;
383;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
384
385(define-syntax match-extract-vars
386 (syntax-rules (_ ___ ? $ = quote quasiquote and or not get! set!)
387 ((match-extract-vars (? pred . p) k i v)
388 (match-extract-vars p k i v))
389 ((match-extract-vars ($ rec . p) k i v)
390 (match-extract-vars p k i v))
391 ((match-extract-vars (= proc p) k i v)
392 (match-extract-vars p k i v))
393 ((match-extract-vars (quote x) (k ...) i v)
394 (k ... v))
395 ((match-extract-vars (quasiquote x) k i v)
396 (match-extract-quasiquote-vars x k i v (#t)))
397 ((match-extract-vars (and . p) k i v)
398 (match-extract-vars p k i v))
399 ((match-extract-vars (or . p) k i v)
400 (match-extract-vars p k i v))
401 ((match-extract-vars (not . p) k i v)
402 (match-extract-vars p k i v))
403 ;; A non-keyword pair, expand the CAR with a continuation to
404 ;; expand the CDR.
405 ((match-extract-vars (p q . r) k i v)
406 (match-check-ellipse
407 q
408 (match-extract-vars (p . r) k i v)
409 (match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
410 ((match-extract-vars (p . q) k i v)
411 (match-extract-vars p (match-extract-vars-step q k i v) i ()))
412 ((match-extract-vars #(p ...) k i v)
413 (match-extract-vars (p ...) k i v))
414 ((match-extract-vars _ (k ...) i v) (k ... v))
415 ((match-extract-vars ___ (k ...) i v) (k ... v))
416 ;; This is the main part, the only place where we might add a new
417 ;; var if it's an unbound symbol.
418 ((match-extract-vars p (k ...) (i ...) v)
419 (let-syntax
420 ((new-sym?
421 (syntax-rules (i ...)
422 ((new-sym? p sk fk) sk)
423 ((new-sym? x sk fk) fk))))
424 (new-sym? random-sym-to-match
425 (k ... ((p p-ls) . v))
426 (k ... v))))
427 ))
428
429;; Stepper used in the above so it can expand the CAR and CDR
430;; separately.
431
432(define-syntax match-extract-vars-step
433 (syntax-rules ()
434 ((_ p k i v ((v2 v2-ls) ...))
435 (match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
436 ))
437
438(define-syntax match-extract-quasiquote-vars
439 (syntax-rules (quasiquote unquote unquote-splicing)
440 ((match-extract-quasiquote-vars (quasiquote x) k i v d)
441 (match-extract-quasiquote-vars x k i v (#t . d)))
442 ((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
443 (match-extract-quasiquote-vars (unquote x) k i v d))
444 ((match-extract-quasiquote-vars (unquote x) k i v (#t))
445 (match-extract-vars x k i v))
446 ((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
447 (match-extract-quasiquote-vars x k i v d))
448 ((match-extract-quasiquote-vars (x . y) k i v (#t . d))
449 (match-extract-quasiquote-vars
450 x
451 (match-extract-quasiquote-vars-step y k i v d) i ()))
452 ((match-extract-quasiquote-vars #(x ...) k i v (#t . d))
453 (match-extract-quasiquote-vars (x ...) k i v d))
454 ((match-extract-quasiquote-vars x (k ...) i v (#t . d))
455 (k ... v))
456 ))
457
458(define-syntax match-extract-quasiquote-vars-step
459 (syntax-rules ()
460 ((_ x k i v d ((v2 v2-ls) ...))
461 (match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
462 ))
463
464
465;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
466;; Gimme some sugar baby.
467
468(define-syntax match-lambda
469 (syntax-rules ()
470 ((_ clause ...) (lambda (expr) (match expr clause ...)))))
471
472(define-syntax match-lambda*
473 (syntax-rules ()
474 ((_ clause ...) (lambda expr (match expr clause ...)))))
475
476(define-syntax match-let
477 (syntax-rules ()
478 ((_ (vars ...) . body)
479 (match-let/helper let () () (vars ...) . body))
480 ((_ loop . rest)
481 (match-named-let loop () . rest))))
482
483(define-syntax match-letrec
484 (syntax-rules ()
485 ((_ vars . body) (match-let/helper letrec () () vars . body))))
486
487(define-syntax match-let/helper
488 (syntax-rules ()
489 ((_ let ((var expr) ...) () () . body)
490 (let ((var expr) ...) . body))
491 ((_ let ((var expr) ...) ((pat tmp) ...) () . body)
492 (let ((var expr) ...)
493 (match-let* ((pat tmp) ...)
494 . body)))
495 ((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
496 (match-let/helper
497 let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
498 ((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
499 (match-let/helper
500 let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
501 ((_ let (v ...) (p ...) ((a expr) . rest) . body)
502 (match-let/helper let (v ... (a expr)) (p ...) rest . body))
503 ))
504
505(define-syntax match-named-let
506 (syntax-rules ()
507 ((_ loop ((pat expr var) ...) () . body)
508 (let loop ((var expr) ...)
509 (match-let ((pat var) ...)
510 . body)))
511 ((_ loop (v ...) ((pat expr) . rest) . body)
512 (match-named-let loop (v ... (pat expr tmp)) rest . body))))
513
514(define-syntax match-let*
515 (syntax-rules ()
516 ((_ () . body)
517 (begin . body))
518 ((_ ((pat expr) . rest) . body)
519 (match expr (pat (match-let* rest . body))))))
520
521
522;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
523;; Not quite portable bits.
524
525;; Matching ellipses `...' is tricky. A strict interpretation of R5RS
526;; would suggest that `...' in the literals list would treat it as a
527;; literal in pattern, however no SYNTAX-RULES implementation I'm
528;; aware of currently supports this. SRFI-46 support would makes this
529;; easy, but SRFI-46 also is widely unsupported.
530
531;; In the meantime we conditionally implement this in whatever
532;; low-level macro system is available, defaulting to an
533;; implementation which doesn't support `...' and requires the user to
534;; match with `___'.
535
536(define-syntax match-check-ellipse
537 (syntax-rules ___ (...)
538 ((_ ... sk fk) sk)
539 ((_ x sk fk) fk)))
540
541(define-syntax match-check-identifier
542 (syntax-rules ()
543 ((_ (x . y) sk fk) fk)
544 ((_ #(x ...) sk fk) fk)
545 ((_ x sk fk)
546 (let-syntax
547 ((sym?
548 (syntax-rules ()
549 ((sym? x sk2 fk2) sk2)
550 ((sym? y sk2 fk2) fk2))))
551 (sym? abracadabra sk fk))) ))